Energy recovery ventilation (ERV) is the energy recovery process in residential and commercial HVAC systems that exchanges the energy contained in normally exhausted air of a building or conditioned space, using it to treat (precondition) the incoming outdoor ventilation air. The specific equipment involved may be called an Energy Recovery Ventilator, also commonly referred to simply as an ERV. During the warmer seasons, an ERV system pre-cools and de-humidifies the intake air; during cooler seasons the system humidifies and pre-heats the incoming air. The exchange of humidity across the intake and exhaust airflows is the main differentiating factor in how an ERV operates as compared to a standard residential heat recovery ventilator (HRV), which does not allow the transfer of humidity between the airstreams. An ERV system helps HVAC systems design meet ventilation and energy standards (e.g., ASHRAE), improves indoor air quality, and reduces total HVAC equipment loads, thereby reducing energy consumption. ERV systems enable an HVAC system to maintain a 40-50% indoor relative humidity, essentially in all conditions. ERV's must use power for a blower to overcome the pressure drop in the system, hence incurring a slight energy demand. Nearly half of global energy is used in buildings, and half of heating/cooling cost is caused by ventilation when it is done by the "open window" method according to the regulations. Secondly, energy generation and grid is made to meet the peak demand of power. To use proper ventilation; recovery is a cost-efficient, sustainable and quick way to reduce global energy consumption and give better indoor air quality (IAQ) and protect buildings, and environment. An ERV is a type of air-to-air heat exchanger that transfers sensible heat as well as latent heat. Because both temperature and moisture are transferred, ERVs are described as total enthalpic devices. In contrast, a heat recovery ventilator (HRV) can only transfer sensible heat. HRVs can be considered sensible only devices because they only exchange sensible heat.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
ME-451: Advanced energetics
Methods for the rational use and conversion of energy in industrial processes : how to analyse the energy usage, calculate the heat recovery by pinch analysis, define heat exchanger network, integrate
Related lectures (25)
Heat Recovery in Process Units
Explores heat recovery in process units, emphasizing energy efficiency and the use of heat exchangers to optimize heat distribution.
Heat Recovery in Process Units
Explores heat recovery, heat exchanger calculation, and pinch analysis for energy optimization.
Heat Exchangers: Energy Systems Engineering
Covers the role of energy in process unit operations and heat transfer requirements.
Show more
Related concepts (5)
Air conditioning
Air conditioning, often abbreviated as A/C (US), AC (US), or air con (UK), is the process of removing heat from an enclosed space to achieve a more comfortable interior environment (sometimes referred to as "comfort cooling") and in some cases also strictly controlling the humidity of internal air. Air conditioning can be achieved using a mechanical air conditioner or alternatively a variety of other methods, including passive cooling or ventilative cooling.
Solar air conditioning
Solar air conditioning, or "solar-powered air conditioning", refers to any air conditioning (cooling) system that uses solar power. This can be done through passive solar design, solar thermal energy conversion, and photovoltaic conversion (sunlight to electricity). The U.S. Energy Independence and Security Act of 2007 created 2008 through 2012 funding for a new solar air conditioning research and development program, which should develop and demonstrate multiple new technology innovations and mass production economies of scale.
Heat recovery ventilation
Heat recovery ventilation (HRV), also known as mechanical ventilation heat recovery (MVHR), is an energy recovery ventilation system that operates between two air sources at different temperatures. It's a method that is used to reduce the heating and cooling demands of buildings. By recovering the residual heat in the exhaust gas, the fresh air introduced into the air conditioning system is preheated (or pre-cooled), and the fresh air's enthalpy is reduced before it enters the room, or the air cooler of the air conditioning unit performs heat and moisture treatment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.