Phloem ('floʊ.əm, ) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, to the rest of the plant. This transport process is called translocation. In trees, the phloem is the innermost layer of the bark, hence the name, derived from the Ancient Greek word φλοιός (phloiós), meaning "bark". The term was introduced by Carl Nägeli in 1858.
Phloem tissue consists of conducting cells, generally called sieve elements, parenchyma cells, including both specialized companion cells or albuminous cells and unspecialized cells and supportive cells, such as fibres and sclereids.
Sieve tube element
Sieve elements are the type of cell that are responsible for transporting sugars throughout the plant. At maturity they lack a nucleus and have very few organelles, so they rely on companion cells or albuminous cells for most of their metabolic needs. Sieve tube cells do contain vacuoles and other organelles, such as ribosomes, before they mature, but these generally migrate to the cell wall and dissolve at maturity; this ensures there is little to impede the movement of fluids. One of the few organelles they do contain at maturity is the rough endoplasmic reticulum, which can be found at the plasma membrane, often nearby the plasmodesmata that connect them to their companion or albuminous cells. All sieve cells have groups of pores at their ends that grow from modified and enlarged plasmodesmata, called sieve areas. The pores are reinforced by platelets of a polysaccharide called callose.
Other parenchyma cells within the phloem are generally undifferentiated and used for food storage.
The metabolic functioning of sieve-tube members depends on a close association with the companion cells, a specialized form of parenchyma cell. All of the cellular functions of a sieve-tube element are carried out by the (much smaller) companion cell, a typical nucleate plant cell except the companion cell usually has a larger number of ribosomes and mitochondria.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A leaf (: leaves) is a principal appendage of the stem of a vascular plant, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leaves, stem, flower, and fruit collectively form the shoot system. In most leaves, the primary photosynthetic tissue is the palisade mesophyll and is located on the upper side of the blade or lamina of the leaf but in some species, including the mature foliage of Eucalyptus, palisade mesophyll is present on both sides and the leaves are said to be isobilateral.
Plants are eukaryotes, predominantly photosynthetic, that form the kingdom Plantae. Many are multicellular. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi. All current definitions exclude the fungi and some of the algae. By one definition, plants form the clade Viridiplantae (Latin for "green plants") which consists of the green algae and the embryophytes or land plants. The latter include hornworts, liverworts, mosses, lycophytes, ferns, conifers and other gymnosperms, and flowering plants.
The meristem is a type of tissue found in plants. It consists of undifferentiated cells (meristematic cells) capable of cell division. Cells in the meristem can develop into all the other tissues and organs that occur in plants. These cells continue to divide until a time when they get differentiated and then lose the ability to divide. Differentiated plant cells generally cannot divide or produce cells of a different type. Meristematic cells are undifferentiated or incompletely differentiated.
The presentation of tree growth and formation of wood anatomical structures, linked to the description of specific physical and mechanical properties, makes it possible to understand the different for
The concomitant occurrence of tissue growth and organization is a hallmark of organismal development(1-3). This often means that proliferating and differentiating cells are found at the same time in a continuously changing tissue environment. How cells ada ...
In recent years, xylem sap composition has been shown to affect xylem hydraulics. However, information on how much xylem sap composition can vary across seasons and specifically under drought stress is still limited. We measured xylem sap chemical composit ...
Oxford2023
The symbiont-bearing jellyfish Cassiopea live a benthic lifestyle, positioning themselves upside-down on sediments in shallow waters to allow their endosymbiotic algae to photosynthesize in the sunlight. Over the last decades Cassiopea has become increasin ...