Summary
Phloem ('floʊ.əm, ) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, to the rest of the plant. This transport process is called translocation. In trees, the phloem is the innermost layer of the bark, hence the name, derived from the Ancient Greek word φλοιός (phloiós), meaning "bark". The term was introduced by Carl Nägeli in 1858. Phloem tissue consists of conducting cells, generally called sieve elements, parenchyma cells, including both specialized companion cells or albuminous cells and unspecialized cells and supportive cells, such as fibres and sclereids. Sieve tube element Sieve elements are the type of cell that are responsible for transporting sugars throughout the plant. At maturity they lack a nucleus and have very few organelles, so they rely on companion cells or albuminous cells for most of their metabolic needs. Sieve tube cells do contain vacuoles and other organelles, such as ribosomes, before they mature, but these generally migrate to the cell wall and dissolve at maturity; this ensures there is little to impede the movement of fluids. One of the few organelles they do contain at maturity is the rough endoplasmic reticulum, which can be found at the plasma membrane, often nearby the plasmodesmata that connect them to their companion or albuminous cells. All sieve cells have groups of pores at their ends that grow from modified and enlarged plasmodesmata, called sieve areas. The pores are reinforced by platelets of a polysaccharide called callose. Other parenchyma cells within the phloem are generally undifferentiated and used for food storage. The metabolic functioning of sieve-tube members depends on a close association with the companion cells, a specialized form of parenchyma cell. All of the cellular functions of a sieve-tube element are carried out by the (much smaller) companion cell, a typical nucleate plant cell except the companion cell usually has a larger number of ribosomes and mitochondria.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood