Concept

Synechococcus elongatus

Synechococcus elongatus is a unicellular cyanobacterium that has a rapid autotrophic growth comparable to yeast. Its ability to grow rapidly using sunlight has implications for biotechnological applications, especially when incorporating genetic modification. In the last decade, several strains of Synechococcus elongatus have been produced in laboratory environments, which ultimately led to the production of Synechococcus elongatus UTEX 2973. S. elongatus UTEX 2973 is a mutant hybrid from UTEX 625. In 1955, William A. Kratz and Jack Myers described a fast-growing cyanobacterial strain, Anacystis nidulans which was deposited in the University of Texas algae culture collection as Synechococcus leopoliensis UTEX 625 However, that strain had lost its rapid growth property and was also unable to grow at high temperatures, unlike the original strain. In 2015, Jingjie Yu and colleagues, were able to isolate the mutant strain from a mixed culture of Synechococcus UTEX 625. The mutant strain was deposited to the UTEX algae culture collection, and given a new number, UTEX 2979. Synechococcus elongatus is rod-shaped with its cells typically greater than 2 μm in length. It typically contains 2–3 thylakoid membrane layers forming evenly spaced concentric rings and its carboxysomes and polyphosphate bodies are located in the central cytoplasmic region (Image 1). The genome sequence of Synechococcus UTEX 2973 was similar to the cyanobacterium Synechococcus PCC 7942. Even though it was isolated from S. elongatus 625, it is most closely related to S. elongatus PCC 7942 with 99.8% similarity. S. elongatus UTEX 2973 contains a SNP to the gene encoding ATP synthase F1 subunit α, comparable to the corresponding gene in Synechococcus PCC 7942. This specific SNP causes an amino acid substitution at the 252nd position of the protein. Synechococcus elongatus UTEX 2973 is photoautotrophic and has one of the shortest doubling times reported for cyanobacteria at 1.5 hours in a BG11 medium at 42 °C under continuous 1,500 μmoles photons·m−2·s−1 white light with 5% CO2.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (4)
Related publications (1)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.