Chromosomal crossover, or crossing over, is the exchange of genetic material during sexual reproduction between two homologous chromosomes' non-sister chromatids that results in recombinant chromosomes. It is one of the final phases of genetic recombination, which occurs in the pachytene stage of prophase I of meiosis during a process called synapsis. Synapsis begins before the synaptonemal complex develops and is not completed until near the end of prophase I. Crossover usually occurs when matching regions on matching chromosomes break and then reconnect to the other chromosome.
Crossing over was described, in theory, by Thomas Hunt Morgan. He relied on the discovery of Frans Alfons Janssens who described the phenomenon in 1909 and had called it "chiasmatypie". The term chiasma is linked, if not identical, to chromosomal crossover. Morgan immediately saw the great importance of Janssens' cytological interpretation of chiasmata to the experimental results of his research on the heredity of Drosophila. The physical basis of crossing over was first demonstrated by Harriet Creighton and Barbara McClintock in 1931.
The linked frequency of crossing over between two gene loci (markers) is the crossing-over value. For fixed set of genetic and environmental conditions, recombination in a particular region of a linkage structure (chromosome) tends to be constant and the same is then true for the crossing-over value which is used in the production of genetic maps.
When Hotta et al in 1977 compared meiotic crossing-over (recombination) in lily and mouse they concluded that diverse eukaryotes share a common pattern. This finding suggested that chromosomal crossing over is a general characteristic of eukaryotic meiosis.
There are two popular and overlapping theories that explain the origins of crossing-over, coming from the different theories on the origin of meiosis. The first theory rests upon the idea that meiosis evolved as another method of DNA repair, and thus crossing-over is a novel way to replace possibly damaged sections of DNA.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Genetic recombination (also known as genetic reshuffling) is the exchange of genetic material between different organisms which leads to production of offspring with combinations of traits that differ from those found in either parent. In eukaryotes, genetic recombination during meiosis can lead to a novel set of genetic information that can be further passed on from parents to offspring.
A couple of homologous chromosomes, or homologs, are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during fertilization. Homologs have the same genes in the same loci where they provide points along each chromosome which enable a pair of chromosomes to align correctly with each other before separating during meiosis. This is the basis for Mendelian inheritance which characterizes inheritance patterns of genetic material from an organism to its offspring parent developmental cell at the given time and area.
Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may be also RNA in viruses). Homologous recombination is widely used by cells to accurately repair harmful DNA breaks that occur on both strands of DNA, known as double-strand breaks (DSB), in a process called homologous recombinational repair (HRR).
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
Le but du cours est de fournir un aperçu général de la biologie des cellules et des organismes. Nous en discuterons dans le contexte de la vie des cellules et des organismes, en mettant l'accent sur l
Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.
Crossover formation is essential for proper segregation of homologous chromosomes during meiosis. Here, we show that Caenorhabditis elegans cyclin-dependent kinase 2 (CDK-2) partners with cyclin-like protein COSA-1 to promote crossover formation by promoti ...
Three-component ParABS systems are widely distributed factors for plasmid partitioning and chromosome segregation in bacteria. ParB acts as adaptor protein between the 16-base pair centromeric parS DNA sequences and the DNA segregation proteins ParA and Sm ...
Meiotic processes are potentially dangerous to genome stability and could be disastrous if activated in proliferative cells. Here we show that two key meiosis-defining proteins, the topoisomerase Spo11 (which forms double-strand breaks) and the meiotic coh ...