Concept

Countably barrelled space

In functional analysis, a topological vector space (TVS) is said to be countably barrelled if every weakly bounded countable union of equicontinuous subsets of its continuous dual space is again equicontinuous. This property is a generalization of barrelled spaces. A TVS X with continuous dual space is said to be countably barrelled if is a weak-* bounded subset of that is equal to a countable union of equicontinuous subsets of , then is itself equicontinuous. A Hausdorff locally convex TVS is countably barrelled if and only if each barrel in X that is equal to the countable intersection of closed convex balanced neighborhoods of 0 is itself a neighborhood of 0. A TVS with continuous dual space is said to be σ-barrelled if every weak-* bounded (countable) sequence in is equicontinuous. A TVS with continuous dual space is said to be sequentially barrelled if every weak-* convergent sequence in is equicontinuous. Every countably barrelled space is a countably quasibarrelled space, a σ-barrelled space, a σ-quasi-barrelled space, and a sequentially barrelled space. An H-space is a TVS whose strong dual space is countably barrelled. Every countably barrelled space is a σ-barrelled space and every σ-barrelled space is sequentially barrelled. Every σ-barrelled space is a σ-quasi-barrelled space. A locally convex quasi-barrelled space that is also a σ-barrelled space is a barrelled space. Every barrelled space is countably barrelled. However, there exist semi-reflexive countably barrelled spaces that are not barrelled. The strong dual of a distinguished space and of a metrizable locally convex space is countably barrelled. There exist σ-barrelled spaces that are not countably barrelled. There exist normed DF-spaces that are not countably barrelled. There exists a quasi-barrelled space that is not a σ-barrelled space. There exist σ-barrelled spaces that are not Mackey spaces. There exist σ-barrelled spaces that are not countably quasi-barrelled spaces and thus not countably barrelled. There exist sequentially barrelled spaces that are not σ-quasi-barrelled.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.