Orthographic projection in cartography has been used since antiquity. Like the stereographic projection and gnomonic projection, orthographic projection is a perspective (or azimuthal) projection in which the sphere is projected onto a tangent plane or secant plane. The point of perspective for the orthographic projection is at infinite distance. It depicts a hemisphere of the globe as it appears from outer space, where the horizon is a great circle. The shapes and areas are distorted, particularly near the edges.
The orthographic projection has been known since antiquity, with its cartographic uses being well documented. Hipparchus used the projection in the 2nd century BC to determine the places of star-rise and star-set. In about 14 BC, Roman engineer Marcus Vitruvius Pollio used the projection to construct sundials and to compute sun positions.
Vitruvius also seems to have devised the term orthographic (from the Greek orthos (= “straight”) and graphē (= “drawing”)) for the projection. However, the name analemma, which also meant a sundial showing latitude and longitude, was the common name until François d'Aguilon of Antwerp promoted its present name in 1613.
The earliest surviving maps on the projection appear as crude woodcut drawings of terrestrial globes of 1509 (anonymous), 1533 and 1551 (Johannes Schöner), and 1524 and 1551 (Apian). A highly-refined map, designed by Renaissance polymath Albrecht Dürer and executed by Johannes Stabius, appeared in 1515.
Photographs of the Earth and other planets from spacecraft have inspired renewed interest in the orthographic projection in astronomy and planetary science.
The formulas for the spherical orthographic projection are derived using trigonometry. They are written in terms of longitude (λ) and latitude (φ) on the sphere. Define the radius of the sphere R and the center point (and origin) of the projection (λ0, φ0). The equations for the orthographic projection onto the (x, y) tangent plane reduce to the following:
Latitudes beyond the range of the map should be clipped by calculating the angular distance c from the center of the orthographic projection.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Bases de la géomatique pour les ingénieur·e·s civil et en environnement. Présentation des méthodes d'acquisition, de gestion et de représentation des géodonnées. Apprentissage pratique avec des méthod
Computer Vision aims at modeling the world from digital images acquired using video or infrared cameras, and other imaging sensors.We will focus on images acquired using digital cameras. We will int
Explores the role of satellite data in air pollution studies, covering topics like aerosol optical depth, satellite measurement techniques, and fire data analysis.
Explores different types of map projections and their practical applications in geomatics, emphasizing the importance of preserving angles and choosing the right projection for accurate representation.
In cartography, a map projection is any of a broad set of transformations employed to represent the curved two-dimensional surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude and longitude, of locations from the surface of the globe are transformed to coordinates on a plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential elements of cartography. All projections of a sphere on a plane necessarily distort the surface in some way and to some extent.
Dark matter clusters on all scales, and it is therefore expected that even substructure should host its own substructure. Using the Extragalactic Distance Database, we searched for dwarf-galaxy satellites of dwarf galaxies, that is, satellite-of-satellite ...
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projecti ...
While road obstacle detection techniques have become increasingly effective, they typically ignore the fact that, in practice, the apparent size of the obstacles decreases as their distance to the vehicle increases. In this letter, we account for this by c ...