Concept

Hexagonal Efficient Coordinate System

The Hexagonal Efficient Coordinate System (HECS), formerly known as Array Set Addressing (ASA), is a coordinate system for hexagonal grids that allows hexagonally sampled images to be efficiently stored and processed on digital systems. HECS represents the hexagonal grid as a set of two interleaved rectangular sub-arrays, which can be addressed by normal integer row and column coordinates and are distinguished with a single binary coordinate. Hexagonal sampling is the optimal approach for isotropically band-limited two-dimensional signals and its use provides a sampling efficiency improvement of 13.4% over rectangular sampling. The HECS system enables the use of hexagonal sampling for digital imaging applications without requiring significant additional processing to address the hexagonal array. The advantages of sampling on a hexagonal grid instead of the standard rectangular grid for digital imaging applications include: more efficient sampling, consistent connectivity, equidistant neighboring pixels, greater angular resolution, and higher circular symmetry. Sometimes, more than one of these advantages compound together, thereby increasing the efficiency by 50% in terms of computation and storage when compared to rectangular sampling. Researchers have shown that the hexagonal grid is the optimal sampling lattice and its use provides a sampling efficiency improvement of 13.4% over rectangular sampling for isotropically band-limited two-dimensional signals. Despite all of these advantages of hexagonal sampling over rectangular sampling, its application has been limited because of the lack of an efficient coordinate system. However that limitation has been removed with the recent development of HECS. The Hexagonal Efficient Coordinate System (HECS) is based on the idea of representing the hexagonal grid as a set of two rectangular arrays which can be individually indexed using familiar integer-valued row and column indices. The arrays are distinguished using a single binary coordinate so that a full address for any point on the hexagonal grid is uniquely represented by three coordinates.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.