Tube Alloys was the research and development programme authorised by the United Kingdom, with participation from Canada, to develop nuclear weapons during the Second World War. Starting before the Manhattan Project in the United States, the British efforts were kept classified, and as such had to be referred to by code even within the highest circles of government.
The possibility of nuclear weapons was acknowledged early in the war. At the University of Birmingham, Rudolf Peierls and Otto Robert Frisch co-wrote a memorandum explaining that a small mass of pure uranium-235 could be used to produce a chain reaction in a bomb with the power of thousands of tons of TNT. This led to the formation of the MAUD Committee, which called for an all-out effort to develop nuclear weapons. Wallace Akers, who oversaw the project, chose the deliberately misleading code name "Tube Alloys". His Tube Alloys Directorate was part of the Department of Scientific and Industrial Research.
The Tube Alloys programme in Britain and Canada was the first nuclear weapons project. Due to the high costs, and the fact that Britain was fighting a war within bombing range of its enemies, Tube Alloys was ultimately subsumed into the Manhattan Project by the Quebec Agreement with the United States, under which the two nations agreed to share nuclear weapons technology, and to refrain from using it against each other, or against other countries without mutual consent, although the United States did not provide complete details of the results of the Manhattan Project to the United Kingdom. The Soviet Union gained valuable information through its atomic spies, who had infiltrated both the British and American projects.
The United States terminated co-operation after the war ended, under the Atomic Energy Act of 1946. That prompted the United Kingdom to relaunch its own project, High Explosive Research. Production facilities were established and British scientists continued their work under the auspices of an independent British programme.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
On 6 and 9 August 1945, the United States detonated two atomic bombs over the Japanese cities of Hiroshima and Nagasaki. The bombings killed between 129,000 and 226,000 people, most of whom were civilians, and remain the only use of nuclear weapons in an armed conflict. Japan surrendered to the Allies on 15 August, six days after the bombing of Nagasaki and the Soviet Union's declaration of war against Japan and invasion of Japanese-occupied Manchuria. The Japanese government signed the instrument of surrender on 2 September, effectively ending the war.
Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric.
Operation Hurricane was the first test of a British atomic device. A plutonium implosion device was detonated on 3 October 1952 in Main Bay, Trimouille Island, in the Montebello Islands in Western Australia. With the success of Operation Hurricane, Britain became the third nuclear power, after the United States and the Soviet Union. During the Second World War, Britain commenced a nuclear weapons project, code-named Tube Alloys, but the 1943 Quebec Agreement merged it with the American Manhattan Project.
The thermally activated pyramidal-to-basal (PB) transition of (c + a) dislocations, transforming glissile pyramidal dissociated core structures into sessile basal dissociated ones, lies at the origin of low ductility in pure magnesium (Mg). Solute-accelera ...
PERGAMON-ELSEVIER SCIENCE LTD2019
In the quest of the structural materials for the future fusion reactor, it has been shown that ferritic/martensitic (F/M) steels are very promising candidates, with a good radiation resistance in terms of damage accumulation in the microstructure relative ...
For new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence o ...