Summary
Dose fractionation effects are utilised in the treatment of cancer with radiation therapy. When the total dose of radiation is divided into several, smaller doses over a period of several days, there are fewer toxic effects on healthy cells. This maximizes the effect of radiation on cancer and minimizes the negative side effects. A typical fractionation scheme divides the dose into 30 units delivered every weekday over six weeks. Experiments in radiation biology have found that as the absorbed dose of radiation increases, the number of cells which survive decreases. They have also found that if the radiation is fractionated into smaller doses, with one or more rest periods in between, fewer cells die. This is because of self-repair mechanisms which repair the damage to DNA and other biomolecules such as proteins. These mechanisms can be over expressed in cancer cells, so caution should be used in using results for a cancer cell line to make predictions for healthy cells if the cancer cell line is known to be resistant to cytotoxic drugs such as cisplatin. The DNA self repair processes in some organisms is exceptionally good; for instance, the bacterium Deinococcus radiodurans can tolerate a 15 000 Gy (1.5 MRad) dose. In the graph to the right, called a cell survival curve, the dose vs. surviving fraction have been drawn for a hypothetical group of cells with and without a rest time for the cells to recover. Other than the recovery time partway through the irradiation, the cells would have been treated identically. The human body contains many types of cells, and the human can be killed by the loss of a single type of cell in a vital organ. For many short-term radiation deaths due to what is commonly known as radiation sickness (3 to 30 days after exposure), it is the loss of bone marrow cells (which produce blood cells), and the loss of other cells in the wall of the intestines, that is fatal. Fractionation effects are utilised in the treatment of cancer with radiation therapy.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
PHYS-450: Radiation biology, protection and applications
This is an introductory course in radiation physics that aims at providing students with a foundation in radiation protection and with information about the main applications of radioactive sources/su
Related publications (33)
Related concepts (4)
Gamma ray
A gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3e19Hz), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium.
Absorbed dose
Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmful effects), and radiology (potential beneficial effects, for example in cancer treatment). It is also used to directly compare the effect of radiation on inanimate matter such as in radiation hardening. The SI unit of measure is the gray (Gy), which is defined as one Joule of energy absorbed per kilogram of matter.
Linear no-threshold model
The linear no-threshold model (LNT) is a dose-response model used in radiation protection to estimate stochastic health effects such as radiation-induced cancer, genetic mutations and teratogenic effects on the human body due to exposure to ionizing radiation. The model statistically extrapolates effects of radiation from very high doses (where they are observable) into very low doses, where no biological effects may be observed.
Show more