Concept

Clifford module

In mathematics, a Clifford module is a representation of a Clifford algebra. In general a Clifford algebra C is a central simple algebra over some field extension L of the field K over which the quadratic form Q defining C is defined. The abstract theory of Clifford modules was founded by a paper of M. F. Atiyah, R. Bott and Arnold S. Shapiro. A fundamental result on Clifford modules is that the Morita equivalence class of a Clifford algebra (the equivalence class of the category of Clifford modules over it) depends only on the signature p − q (mod 8). This is an algebraic form of Bott periodicity. We will need to study anticommuting matrices (AB = −BA) because in Clifford algebras orthogonal vectors anticommute For the real Clifford algebra , we need p + q mutually anticommuting matrices, of which p have +1 as square and q have −1 as square. Such a basis of gamma matrices is not unique. One can always obtain another set of gamma matrices satisfying the same Clifford algebra by means of a similarity transformation. where S is a non-singular matrix. The sets γa′ and γa belong to the same equivalence class. Developed by Ettore Majorana, this Clifford module enables the construction of a Dirac-like equation without complex numbers, and its elements are called Majorana spinors. The four basis vectors are the three Pauli matrices and a fourth antihermitian matrix. The signature is (+++−). For the signatures (+−−−) and (−−−+) often used in physics, 4×4 complex matrices or 8×8 real matrices are needed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.