In the field of artificial intelligence (AI), a hallucination or artificial hallucination (also called confabulation or delusion) is a confident response by an AI that does not seem to be justified by its training data. For example, a hallucinating chatbot might, when asked to generate a financial report for a company, falsely state that the company's revenue was $13.6 billion (or some other random number apparently "plucked from thin air").
Such phenomena are termed "hallucinations", in loose analogy with the phenomenon of hallucination in human psychology. However, one key difference is that human hallucination is usually associated with false percepts, but an AI hallucination is associated with the category of unjustified responses or beliefs. Some researchers believe the specific term "AI hallucination" unreasonably anthropomorphizes computers.
AI hallucination gained prominence around 2022 alongside the rollout of certain large language models (LLMs) such as ChatGPT. Users complained that such bots often seemed to pointlessly embed plausible-sounding random falsehoods within their generated content. By 2023, analysts considered frequent hallucination to be a major problem in LLM technology.
Various researchers cited by Wired have classified adversarial hallucinations as a high-dimensional statistical phenomenon, or have attributed hallucinations to insufficient training data. Some researchers believe that some "incorrect" AI responses classified by humans as "hallucinations" in the case of object detection may in fact be justified by the training data, or even that an AI may be giving the "correct" answer that the human reviewers are failing to see. For example, an adversarial image that looks, to a human, like an ordinary image of a dog, may in fact be seen by the AI to contain tiny patterns that (in authentic images) would only appear when viewing a cat. The AI is detecting real-world visual patterns that humans are insensitive to. However, these findings have been challenged by other researchers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A large language model (LLM) is a language model characterized by its large size. Their size is enabled by AI accelerators, which are able to process vast amounts of text data, mostly scraped from the Internet. The artificial neural networks which are built can contain from tens of millions and up to billions of weights and are (pre-)trained using self-supervised learning and semi-supervised learning. Transformer architecture contributed to faster training.
Generative artificial intelligence (AI) is artificial intelligence capable of generating text, images, or other media, using generative models. Generative AI models learn the patterns and structure of their input training data and then generate new data that has similar characteristics. In the early 2020s, advances in transformer-based deep neural networks enabled a number of generative AI systems notable for accepting natural language prompts as input.
In the field of artificial intelligence (AI), AI alignment research aims to steer AI systems towards humans' intended goals, preferences, or ethical principles. An AI system is considered aligned if it advances the intended objectives. A misaligned AI system pursues some objectives, but not the intended ones. It can be challenging for AI designers to align an AI system because it can be difficult for them to specify the full range of desired and undesired behaviors.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
Transformer models such as GPT generate human-like language and are predictive of human brain responses to language. Here, using functional-MRI-measured brain responses to 1,000 diverse sentences, we first show that a GPT-based encoding model can predict t ...
Berlin2024
, ,
Assessing the individual risk of Major Adverse Cardiac Events (MACE) is of major importance as cardiovascular diseases remain the leading cause of death worldwide. Quantitative Myocardial Perfusion Imaging (MPI) parameters such as stress Myocardial Blood F ...
Nature Portfolio2024
, ,
Most recent test-time adaptation methods focus on only classification tasks, use specialized network architectures, destroy model calibration or rely on lightweight information from the source domain. To tackle these issues, this paper proposes a novel Tes ...