In the mathematical field of graph theory, a snark is an undirected graph with exactly three edges per vertex whose edges cannot be colored with only three colors. In order to avoid trivial cases, snarks are often restricted to have additional requirements on their connectivity and on the length of their cycles. Infinitely many snarks exist.
One of the equivalent forms of the four color theorem is that every snark is a non-planar graph. Research on snarks originated in Peter G. Tait's work on the four color theorem in 1880, but their name is much newer, given to them by Martin Gardner in 1976. Beyond coloring, snarks also have connections to other hard problems in graph theory: writing in the Electronic Journal of Combinatorics, Miroslav Chladný and Martin Škoviera state that
In the study of various important and difficult problems in graph theory (such as the cycle double cover conjecture and the 5-flow conjecture), one encounters an interesting but somewhat mysterious variety of graphs called snarks. In spite of their simple definition...and over a century long investigation, their properties and structure are largely unknown.
As well as the problems they mention, W. T. Tutte's snark conjecture concerns the existence of Petersen graphs as graph minors of snarks; its proof has been long announced but remains unpublished, and would settle a special case of the existence of nowhere zero 4-flows.
Snarks were so named by the American mathematician Martin Gardner in 1976, after the mysterious and elusive object of the poem The Hunting of the Snark by Lewis Carroll. However, the study of this class of graphs is significantly older than their name. Peter G. Tait initiated the study of snarks in 1880, when he proved that the four color theorem is equivalent to the statement that no snark is planar. The first graph known to be a snark was the Petersen graph; it was proved to be a snark by Julius Petersen in 1898, although it had already been studied for a different purpose by Alfred Kempe in 1886.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers the statistical physics approach to computer science problems ranging from graph theory and constraint satisfaction to inference and machine learning. In particular the replica and
In the mathematical field of graph theory, a cubic graph is a graph in which all vertices have degree three. In other words, a cubic graph is a 3-regular graph. Cubic graphs are also called trivalent graphs. A bicubic graph is a cubic bipartite graph. In 1932, Ronald M. Foster began collecting examples of cubic symmetric graphs, forming the start of the Foster census.
In the mathematical field of graph theory, Tietze's graph is an undirected cubic graph with 12 vertices and 18 edges. It is named after Heinrich Franz Friedrich Tietze, who showed in 1910 that the Möbius strip can be subdivided into six regions that all touch each other – three along the boundary of the strip and three along its center line – and therefore that graphs that are embedded onto the Möbius strip may require six colors.
In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e.
Given a graph H and a set of graphs F, let ex(n, H, F) denote the maximum possible number of copies of H in an T-free graph on n vertices. We investigate the function ex(n, H, F), when H and members of F are cycles. Let C-k denote the cycle of length k and ...
The split-coloring problem is a generalized vertex coloring problem where we partition the vertices into a minimum number of split graphs. In this paper, we study some notions which are extensively studied for the usual vertex coloring and the cocoloring p ...
2010
We study two decomposition problems in combinatorial geometry. The first part of the thesis deals with the decomposition of multiple coverings of the plane. We say that a planar set is cover-decomposable if there is a constant m such that any m-fold coveri ...