Concept

Vector fields in cylindrical and spherical coordinates

Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken in comparing different sources. Vectors are defined in cylindrical coordinates by (ρ, φ, z), where ρ is the length of the vector projected onto the xy-plane, φ is the angle between the projection of the vector onto the xy-plane (i.e. ρ) and the positive x-axis (0 ≤ φ < 2π), z is the regular z-coordinate. (ρ, φ, z) is given in Cartesian coordinates by: or inversely by: Any vector field can be written in terms of the unit vectors as: The cylindrical unit vectors are related to the Cartesian unit vectors by: Note: the matrix is an orthogonal matrix, that is, its inverse is simply its transpose. To find out how the vector field A changes in time, the time derivatives should be calculated. For this purpose Newton's notation will be used for the time derivative (). In Cartesian coordinates this is simply: However, in cylindrical coordinates this becomes: The time derivatives of the unit vectors are needed. They are given by: So the time derivative simplifies to: The second time derivative is of interest in physics, as it is found in equations of motion for classical mechanical systems. The second time derivative of a vector field in cylindrical coordinates is given by: To understand this expression, A is substituted for P, where P is the vector (ρ, φ, z). This means that . After substituting, the result is given: In mechanics, the terms of this expression are called: Centripetal forceAngular acceleration and Coriolis effect Vectors are defined in spherical coordinates by (r, θ, φ), where r is the length of the vector, θ is the angle between the positive Z-axis and the vector in question (0 ≤ θ ≤ π), and φ is the angle between the projection of the vector onto the xy-plane and the positive X-axis (0 ≤ φ < 2π).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.