A charged particle beam is a spatially localized group of electrically charged particles that have approximately the same position, kinetic energy (resulting in the same velocity), and direction. The kinetic energies of the particles are much larger than the energies of particles at ambient temperature. The high energy and directionality of charged particle beams make them useful for many applications in particle physics (see Particle beam#Applications and Electron-beam technology).
Such beams can be split into two main classes:
unbunched beams (coasting beams or DC beams), which have no longitudinal substructure in the direction of beam motion.
bunched beams, in which the particles are distributed into pulses (bunches) of particles. Bunched beams are most common in modern facilities, since the most modern particle accelerators require bunched beams for acceleration.
Assuming a normal distribution of particle positions and impulses, a charged particle beam (or a bunch of the beam) is characterized by
the species of particle, e.g. electrons, protons, or atomic nuclei
the mean energy of the particles, often expressed in electronvolts (typically keV to GeV)
the (average) particle current, often expressed in amperes
the particle beam size, often using the so-called β-function
the beam emittance, a measure of the area occupied by the beam in one of several phase spaces.
These parameters can be expressed in various ways. For example, the current and beam size can be combined into the current density, and the current and energy (or beam voltage V) can be combined into the perveance K = I V−3/2.
The charged particle beams that can be manipulated in particle accelerators can be subdivided into electron beams, ion beams and proton beams.
Electron beam, or cathode ray, such as in a scanning electron microscope or in accelerators such as the Large Electron–Positron Collider or synchrotron light sources.
Proton beam, such as the beams used in proton therapy, at colliders such as the Tevatron and the Large Hadron Collider, or for proton beam writing in lithography.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Accelerator physics covers a wide range of very exciting topics. This course presents basic physics ideas and the technologies underlying the workings of modern accelerators. An overview of the new id
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Explores the characteristics of typical plasmas from interstellar space to solar corona, discussing temperature, number density, collision processes, and properties.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV.
Quadrupole magnets, abbreviated as Q-magnets, consist of groups of four magnets laid out so that in the planar multipole expansion of the field, the dipole terms cancel and where the lowest significant terms in the field equations are quadrupole. Quadrupole magnets are useful as they create a magnetic field whose magnitude grows rapidly with the radial distance from its longitudinal axis. This is used in particle beam focusing.
, , , , ,
The collimation system of the Future Circular Collider, operating with leptons (FCC-ee), must protect not only the experiments against backgrounds, but also the machine itself from beam losses. With a 17.8 MJ stored energy of the electron and positron beam ...
Iop Publishing Ltd2024
Stable and uniform beams with low divergence are required in particle accelerators; therefore, beyond the accelerated current, measuring the beam current spatial uniformity and stability over time is necessary to assess the beam performance, since these pa ...
MDPI2023
,
The High Intensity Proton Accelerator facility (HIPA) delivers a 590 MeV cw (50.6 MHz) proton beam with up to 1.4 MW beam power (2.4 mA) to spallation and meson production targets serving particle physics experiments and material research. The main acceler ...