Concept

Bessel process

In mathematics, a Bessel process, named after Friedrich Bessel, is a type of stochastic process. The Bessel process of order n is the real-valued process X given (when n ≥ 2) by where ||·|| denotes the Euclidean norm in Rn and W is an n-dimensional Wiener process (Brownian motion). For any n, the n-dimensional Bessel process is the solution to the stochastic differential equation (SDE) where W is a 1-dimensional Wiener process (Brownian motion). Note that this SDE makes sense for any real parameter (although the drift term is singular at zero). A notation for the Bessel process of dimension n started at zero is BES_0(n). For n ≥ 2, the n-dimensional Wiener process started at the origin is transient from its starting point: with probability one, i.e., Xt > 0 for all t > 0. It is, however, neighbourhood-recurrent for n = 2, meaning that with probability 1, for any r > 0, there are arbitrarily large t with Xt < r; on the other hand, it is truly transient for n > 2, meaning that Xt ≥ r for all t sufficiently large. For n ≤ 0, the Bessel process is usually started at points other than 0, since the drift to 0 is so strong that the process becomes stuck at 0 as soon as it hits 0. 0- and 2-dimensional Bessel processes are related to local times of Brownian motion via the Ray–Knight theorems. The law of a Brownian motion near x-extrema is the law of a 3-dimensional Bessel process (theorem of Tanaka).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.