Shellsort, also known as Shell sort or Shell's method, is an in-place comparison sort. It can be seen as either a generalization of sorting by exchange (bubble sort) or sorting by insertion (insertion sort). The method starts by sorting pairs of elements far apart from each other, then progressively reducing the gap between elements to be compared. By starting with far apart elements, it can move some out-of-place elements into position faster than a simple nearest neighbor exchange. Donald Shell published the first version of this sort in 1959. The running time of Shellsort is heavily dependent on the gap sequence it uses. For many practical variants, determining their time complexity remains an open problem.
Shellsort is an optimization of insertion sort that allows the exchange of items that are far apart. The idea is to arrange the list of elements so that, starting anywhere, taking every hth element produces a sorted list. Such a list is said to be h-sorted. It can also be thought of as h interleaved lists, each individually sorted. Beginning with large values of h allows elements to move long distances in the original list, reducing large amounts of disorder quickly, and leaving less work for smaller h-sort steps to do. If the list is then k-sorted for some smaller integer k, then the list remains h-sorted. Following this idea for a decreasing sequence of h values ending in 1 is guaranteed to leave a sorted list in the end.
In simplistic terms, this means if we have an array of 1024 numbers, our first gap (h) could be 512. We then run through the list comparing each element in the first half to the element in the second half. Our second gap (k) is 256, which breaks the array into four sections (starting at 0, 256, 512, 768), and we make sure the first items in each section are sorted relative to each other, then the second item in each section, and so on. In practice the gap sequence could be anything, but the last gap is always 1 to finish the sort (effectively finishing with an ordinary insertion sort).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
The students learn the theory and practice of basic concepts and techniques in algorithms. The course covers mathematical induction, techniques for analyzing algorithms, elementary data structures, ma
A comparison sort is a type of sorting algorithm that only reads the list elements through a single abstract comparison operation (often a "less than or equal to" operator or a three-way comparison) that determines which of two elements should occur first in the final sorted list. The only requirement is that the operator forms a total preorder over the data, with: if a ≤ b and b ≤ c then a ≤ c (transitivity) for all a and b, a ≤ b or b ≤ a (connexity). It is possible that both a ≤ b and b ≤ a; in this case either may come first in the sorted list.
Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions. Quicksort is a divide-and-conquer algorithm. It works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot.
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor.
Advances in data acquisition technologies and supercomputing for large-scale simulations have led to an exponential growth in the volume of spatial data. This growth is accompanied by an increase in data complexity, such as spatial density, but also by mor ...
EPFL2019
We study the basic problem of assigning memoryless workers to tasks with dynamically changing demands. Given a set of w workers and a multiset T ⊆ [t] of |T| = w tasks, a memoryless worker-task assignment function is any function ϕ that assigns the workers ...
Schloss Dagstuhl -- Leibniz-Zentrum fur Informatik2022
With large-scale simulations of increasingly detailed models and improvement of data acquisition technologies, massive amounts of data are easily and quickly created and collected. Traditional systems require indexes to be built before analytic queries can ...