The Popigai impact structure is the eroded remnant of an impact crater in northern Siberia, Russia. It is tied with the Manicouagan structure as the fourth largest verified impact structure on Earth. A large bolide impact created the diameter crater approximately 35 million years ago during the late Eocene epoch (Priabonian stage). It might be linked to the Eocene–Oligocene extinction event.
The structure is east from the outpost of Khatanga and northeast of the city of Norilsk, NNE of the Anabar Plateau. It is designated by UNESCO as a Geopark, a site of special geological heritage. There is a small possibility that the Popigai impact crater may have formed simultaneously with the approximately 35-million-year-old Chesapeake Bay and Toms Canyon impact craters.
For decades, the Popigai impact structure has fascinated paleontologists and geologists, but the entire area was completely off limits because of the diamonds found there. However, a major investigatory expedition was undertaken in 1997, which greatly advanced understanding of the structure. The impactor is suggested to have been a H chondrite asteroid based on ejecta layers from Italy, with the impactor thought to have been several kilometeres in diameter.
The shock pressures from the impact instantaneously transformed graphite in the ground into diamonds within a radius of the impact point. These diamonds are usually in diameter, though a few exceptional specimens are in size. The diamonds inherited the tabular shape of the original graphite grains and also the original crystals' delicate striations.
Most modern industrial diamonds are produced synthetically. The diamond deposits at Popigai have not been mined because of the remote location and lack of infrastructure, and are unlikely to be competitive with synthetic diamonds. Many of the diamonds at Popigai contain crystalline lonsdaleite, an allotrope of carbon that has a hexagonal lattice. Pure, laboratory-created lonsdaleite is up to 58% harder than ordinary diamonds.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An impact event is a collision between astronomical objects causing measurable effects. Impact events have physical consequences and have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effect. When large objects impact terrestrial planets such as the Earth, there can be significant physical and biospheric consequences, though atmospheres mitigate many surface impacts through atmospheric entry.
A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical interactions with the atmospheric gases cause it to heat up and radiate energy. It then becomes a meteor and forms a fireball, also known as a shooting star; astronomers call the brightest examples "bolides".
This thesis is an in-depth treatment of water vapor transport in snowpacks and its impacts on snow structure. The aim is to better understand this transport process and to lay the basis for a model representation in physics-based multi-layer snow models. O ...
EPFL2022
, ,
In this study, the combination of dimensional analysis (DA) and analysis of variance (ANOVA) was used to predict the volumetric mass transfer coefficient (k(L)a) values under different operating conditions for orbitally shaken bioreactors (OSRs) with diffe ...
The production of superheated melt during hypervelocity impact events has been proposed to be a common occurrence on terrestrial planetary bodies. Recent direct evidence of superheated impact melt temperatures exceeding > 2370 degrees C from the Kamestasti ...