In mathematical logic, algebraic logic is the reasoning obtained by manipulating equations with free variables.
What is now usually called classical algebraic logic focuses on the identification and algebraic description of models appropriate for the study of various logics (in the form of classes of algebras that constitute the algebraic semantics for these deductive systems) and connected problems like representation and duality. Well known results like the representation theorem for Boolean algebras and Stone duality fall under the umbrella of classical algebraic logic .
Works in the more recent abstract algebraic logic (AAL) focus on the process of algebraization itself, like classifying various forms of algebraizability using the Leibniz operator .
A homogeneous binary relation is found in the power set of X × X for some set X, while a heterogeneous relation is found in the power set of X × Y, where X ≠ Y. Whether a given relation holds for two individuals is one bit of information, so relations are studied with Boolean arithmetic. Elements of the power set are partially ordered by inclusion, and lattice of these sets becomes an algebra through relative multiplication or composition of relations.
"The basic operations are set-theoretic union, intersection and complementation, the relative multiplication, and conversion."
The conversion refers to the converse relation that always exists, contrary to function theory. A given relation may be represented by a logical matrix; then the converse relation is represented by the transpose matrix. A relation obtained as the composition of two others is then represented by the logical matrix obtained by matrix multiplication using Boolean arithmetic.
An example of calculus of relations arises in erotetics, the theory of questions. In the universe of utterances there are statements S and questions Q. There are two relations π and α from Q to S: q α a holds when a is a direct answer to question q. The other relation, q π p holds when p is a presupposition of question q.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Explores the evolution of digital systems, covering basics like Boolean algebra and logic gates, and emphasizes teamwork skills and professional vocabulary.
An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities by George Boole, published in 1854, is the second of Boole's two monographs on algebraic logic. Boole was a professor of mathematics at what was then Queen's College, Cork (now University College Cork), in Ireland. The historian of logic John Corcoran wrote an accessible introduction to Laws of Thought and a point by point comparison of Prior Analytics and Laws of Thought.
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation. The motivating example of a relation algebra is the algebra 2 X 2 of all binary relations on a set X, that is, subsets of the cartesian square X2, with R•S interpreted as the usual composition of binary relations R and S, and with the converse of R as the converse relation. Relation algebra emerged in the 19th-century work of Augustus De Morgan and Charles Peirce, which culminated in the algebraic logic of Ernst Schröder.
In mathematical logic, abstract algebraic logic is the study of the algebraization of deductive systems arising as an abstraction of the well-known Lindenbaum–Tarski algebra, and how the resulting algebras are related to logical systems. The archetypal association of this kind, one fundamental to the historical origins of algebraic logic and lying at the heart of all subsequently developed subtheories, is the association between the class of Boolean algebras and classical propositional calculus.
Most logic synthesis algorithms work on graph representations of logic functions with nodes associated with arbitrary logic expressions or simple logic functions and iteratively optimize such graphs. While recent multilevel logic synthesis efforts focused ...
Typical operators for the decomposition of Boolean functions in state-of-the-art algorithms are AND, exclusive-OR (XOR), and the 2-to-1 multiplexer (MUX). We propose a logic decomposition algorithm that uses the majority-of-three (MAJ) operation. Such a de ...
Emerging reconfigurable nanotechnologies allow the implementation of self-dual functions with a fewer number of transistors as compared to traditional CMOS technologies. To achieve better area results for Reconfigurable Field-Effect Transistors (RFET)-base ...