In Euclidean space, the distance from a point to a plane is the distance between a given point and its orthogonal projection on the plane, the perpendicular distance to the nearest point on the plane.
It can be found starting with a change of variables that moves the origin to coincide with the given point then finding the point on the shifted plane that is closest to the origin. The resulting point has Cartesian coordinates :
The distance between the origin and the point is .
Suppose we wish to find the nearest point on a plane to the point (), where the plane is given by . We define , , , and , to obtain as the plane expressed in terms of the transformed variables. Now the problem has become one of finding the nearest point on this plane to the origin, and its distance from the origin. The point on the plane in terms of the original coordinates can be found from this point using the above relationships between and , between and , and between and ; the distance in terms of the original coordinates is the same as the distance in terms of the revised coordinates.
The formula for the closest point to the origin may be expressed more succinctly using notation from linear algebra. The expression in the definition of a plane is a dot product , and the expression appearing in the solution is the squared norm . Thus, if is a given vector, the plane may be described as the set of vectors for which and the closest point on this plane to the origin is the vector
The Euclidean distance from the origin to the plane is the norm of this point,
In either the coordinate or vector formulations, one may verify that the given point lies on the given plane by plugging the point into the equation of the plane.
To see that it is the closest point to the origin on the plane, observe that is a scalar multiple of the vector defining the plane, and is therefore orthogonal to the plane.
Thus, if is any point on the plane other than itself, then the line segments from the origin to and from to form a right triangle, and by the Pythagorean theorem the distance from the origin to is
Since must be a positive number, this distance is greater than , the distance from the origin to .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a flat or Euclidean subspace is a subset of a Euclidean space that is itself a Euclidean space (of lower dimension). The flats in two-dimensional space are points and lines, and the flats in three-dimensional space are points, lines, and planes. In a n-dimensional space, there are flats of every dimension from 0 to n − 1; flats of dimension n − 1 are called hyperplanes. Flats are the affine subspaces of Euclidean spaces, which means that they are similar to linear subspaces, except that they need not pass through the origin.
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
Related publications (8)
Covers the material point model, initial conditions, and Newton's laws in physics.
Covers signal representation and manipulation techniques in different domains.
Explores the historical evolution of perspective in art, from ancient times to the Renaissance.
We study the problem of localizing a configuration of points and planes from the collection of point-to-plane distances. This problem models simultaneous localization and mapping from acoustic echoes as well as the & x201C;structure from sound & x201D; app ...
2020
, , , ,
Among heterosexual couples, employment of the female partner may suffer from household migration often driven by the job of the male partner. Most research has traditionally focused on the distance moved after couple formation and has neglected how far par ...
2024
, ,
We study simultaneous localization and mapping with a device that uses reflections to measure its distance from walls. Such a device can be realized acoustically with a synchronized collocated source and receiver; it behaves like a bat with no capacity for ...