A "return-to-libc" attack is a computer security attack usually starting with a buffer overflow in which a subroutine return address on a call stack is replaced by an address of a subroutine that is already present in the process executable memory, bypassing the no-execute bit feature (if present) and ridding the attacker of the need to inject their own code. The first example of this attack in the wild was contributed by Alexander Peslyak on the Bugtraq mailing list in 1997.
On POSIX-compliant operating systems the C standard library ("libc") is commonly used to provide a standard runtime environment for programs written in the C programming language. Although the attacker could make the code return anywhere, libc is the most likely target, as it is almost always linked to the program, and it provides useful calls for an attacker (such as the system function used to execute shell commands).
A non-executable stack can prevent some buffer overflow exploitation, however it cannot prevent a return-to-libc attack because in the return-to-libc attack only existing executable code is used. On the other hand, these attacks can only call preexisting functions. Stack-smashing protection can prevent or obstruct exploitation as it may detect the corruption of the stack and possibly flush out the compromised segment.
"ASCII armoring" is a technique that can be used to obstruct this kind of attack. With ASCII armoring, all the system libraries (e.g., libc) addresses contain a NULL byte (0x00). This is commonly done by placing them in the first 0x01010101 bytes of memory (a few pages more than 16 MB, dubbed the "ASCII armor region"), as every address up to (but not including) this value contains at least one NULL byte. This makes it impossible to emplace code containing those addresses using string manipulation functions such as strcpy(). However, this technique does not work if the attacker has a way to overflow NULL bytes into the stack. If the program is too large to fit in the first 16 MB, protection may be incomplete.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Buffer overflow protection is any of various techniques used during software development to enhance the security of executable programs by detecting buffer overflows on stack-allocated variables, and preventing them from causing program misbehavior or from becoming serious security vulnerabilities. A stack buffer overflow occurs when a program writes to a memory address on the program's call stack outside of the intended data structure, which is usually a fixed-length buffer.
Address space layout randomization (ASLR) is a computer security technique involved in preventing exploitation of memory corruption vulnerabilities. In order to prevent an attacker from reliably jumping to, for example, a particular exploited function in memory, ASLR randomly arranges the address space positions of key data areas of a process, including the base of the executable and the positions of the stack, heap and libraries. The Linux PaX project first coined the term "ASLR", and published the first design and implementation of ASLR in July 2001 as a patch for the Linux kernel.
In computer security, executable-space protection marks memory regions as non-executable, such that an attempt to execute machine code in these regions will cause an exception. It makes use of hardware features such as the NX bit (no-execute bit), or in some cases software emulation of those features. However, technologies that emulate or supply an NX bit will usually impose a measurable overhead while using a hardware-supplied NX bit imposes no measurable overhead.
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
This is an introductory course to computer security and privacy. Its goal is to provide students with means to reason about security and privacy problems, and provide them with tools to confront them.
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Covers code injection and control-flow hijack attacks, and defenses like Data Execution Prevention and Stack Canaries.
Introduces LabVIEW programming basics, covering user interface, data types, file handling, and error management.
Explores vulnerabilities in web and software applications, discussing broken access control, injection flaws, and defense strategies like DEP and ASLR.