Assortativity, or assortative mixing, is a preference for a network's nodes to attach to others that are similar in some way. Though the specific measure of similarity may vary, network theorists often examine assortativity in terms of a node's degree. The addition of this characteristic to network models more closely approximates the behaviors of many real world networks.
Correlations between nodes of similar degree are often found in the mixing patterns of many observable networks. For instance, in social networks, nodes tend to be connected with other nodes with similar degree values. This tendency is referred to as assortative mixing, or assortativity. On the other hand, technological and biological networks typically show disassortative mixing, or disassortativity, as high degree nodes tend to attach to low degree nodes.
Assortativity is often operationalized as a correlation between two nodes. However, there are several ways to capture such a correlation. The two most prominent measures are the assortativity coefficient and the neighbor connectivity. These measures are outlined in more detail below.
The assortativity coefficient is the Pearson correlation coefficient of degree between pairs of linked nodes. Positive values of r indicate a correlation between nodes of similar degree, while negative values indicate relationships between nodes of different degree. In general, r lies between −1 and 1. When r = 1, the network is said to have perfect assortative mixing patterns, when r = 0 the network is non-assortative, while at r = −1 the network is completely disassortative.
The assortativity coefficient is given by . The term is the distribution of the remaining degree. This captures the number of edges leaving the node, other than the one that connects the pair. The distribution of this term is derived from the degree distribution as . Finally, refers to the joint probability distribution of the remaining degrees of the two vertices. This quantity is symmetric on an undirected graph, and follows the sum rules and .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A social network is a social structure made up of a set of social actors (such as individuals or organizations), sets of dyadic ties, and other social interactions between actors. The social network perspective provides a set of methods for analyzing the structure of whole social entities as well as a variety of theories explaining the patterns observed in these structures. The study of these structures uses social network analysis to identify local and global patterns, locate influential entities, and examine network dynamics.
Agenesis of the corpus callosum (AgCC) is a congenital brain malformation characterized by the complete or partial failure to develop the corpus callosum. Despite missing the largest white matter bundle connecting the left and right hemispheres of the brai ...
ELSEVIER SCI LTD2021
, ,
Network alignment refers to the problem of matching the vertex sets of two unlabeled graphs, which can be viewed as a generalization of the classic graph isomorphism problem. Network alignment has applications in several fields, including social network an ...
Schools are known to play a significant role in the spread of influenza. High vaccination coverage can reduce infectious disease spread within schools and the wider community through vaccine-induced immunity in vaccinated individuals and through the indire ...