Summary
A planetary core consists of the innermost layers of a planet. Cores may be entirely solid or entirely liquid, or a mixture of solid and liquid layers as is the case in the Earth. In the Solar System, core sizes range from about 20% (the Moon) to 85% of a planet's radius (Mercury). Gas giants also have cores, though the composition of these are still a matter of debate and range in possible composition from traditional stony/iron, to ice or to fluid metallic hydrogen. Gas giant cores are proportionally much smaller than those of terrestrial planets, though they can be considerably larger than the Earth's nevertheless; Jupiter's is 10–30 times heavier than Earth, and exoplanet HD149026 b may have a core 100 times the mass of the Earth. Planetary cores are challenging to study because they are impossible to reach by drill and there are almost no samples that are definitively from the core. Thus, they are studied via indirect techniques such as seismology, mineral physics, and planetary dynamics. Earth's core In 1797, Henry Cavendish calculated the average density of the earth to be 5.48 times the density of water (later refined to 5.53), which led to the accepted belief that the Earth was much denser in its interior. Following the discovery of iron meteorites, Wiechert in 1898 postulated that the Earth had a similar bulk composition to iron meteorites, but the iron had settled to the interior of the Earth, and later represented this by integrating the bulk density of the Earth with the missing iron and nickel as a core. The first detection of Earth's core occurred in 1906 by Richard Dixon Oldham upon discovery of the P-wave shadow zone; the liquid outer core. By 1936 seismologists had determined the size of the overall core as well as the boundary between the fluid outer core and the solid inner core. The internal structure of the Moon was characterized in 1974 using seismic data collected by the Apollo missions of moonquakes. The Moon's core has a radius of 300 km.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood