False precision (also called overprecision, fake precision, misplaced precision and spurious precision) occurs when numerical data are presented in a manner that implies better precision than is justified; since precision is a limit to accuracy (in the ISO definition of accuracy), this often leads to overconfidence in the accuracy, named precision bias.
Madsen Pirie defines the term "false precision" in a more general way: when exact numbers are used for notions that cannot be expressed in exact terms. For example, "We know that 90% of the difficulty in writing is getting started." Often false precision is abused to produce an unwarranted confidence in the claim: "our mouthwash is twice as good as our competitor's".
In science and engineering, convention dictates that unless a margin of error is explicitly stated, the number of significant figures used in the presentation of data should be limited to what is warranted by the precision of those data. For example, if an instrument can be read to tenths of a unit of measurement, results of calculations using data obtained from that instrument can only be confidently stated to the tenths place, regardless of what the raw calculation returns or whether other data used in the calculation are more accurate. Even outside these disciplines, there is a tendency to assume that all the non-zero digits of a number are meaningful; thus, providing excessive figures may lead the viewer to expect better precision than exists.
However, in contrast, it is good practice to retain more significant figures than this in the intermediate stages of a calculation, in order to avoid accumulated rounding errors.
False precision commonly arises when high-precision and low-precision data are combined, when using an electronic calculator, and in conversion of units.
False precision is the gist of numerous variations of a joke which can be summarized as follows: A tour guide at a museum says a dinosaur skeleton is 100,000,005 years old, because an expert told him that it was 100 million years old when he started working there 5 years ago.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Rounding means replacing a number with an approximate value that has a shorter, simpler, or more explicit representation. For example, replacing with, the fraction 312/937 with 1/3, or the expression with . Rounding is often done to obtain a value that is easier to report and communicate than the original. Rounding can also be important to avoid misleadingly precise reporting of a computed number, measurement, or estimate; for example, a quantity that was computed as but is known to be accurate only to within a few hundred units is usually better stated as "about ".
The Lambert W function appears in a wide variety of circumstances, including the recent application to signal processing referred to in the paper under discussion. Besides applications, a sizable body of mathematical analysis has been reported. The origina ...
The goal of multi-objective quality-driven service selection (QDSS) is to find service selections for a workflow whose quality-of-service (QoS) values are Pareto-optimal. We consider multiple QoS attributes such as response time, cost, and reliability. A s ...
Institute of Electrical and Electronics Engineers2014
Density, speed and energy efficiency of integrated circuits have been increasing exponentially for the last four decades following Moore's law. However, power and reliability pose several challenges to the future of technology scaling. Approximate computin ...