Concept

Periodic points of complex quadratic mappings

This article describes periodic points of some complex quadratic maps. A map is a formula for computing a value of a variable based on its own previous value or values; a quadratic map is one that involves the previous value raised to the powers one and two; and a complex map is one in which the variable and the parameters are complex numbers. A periodic point of a map is a value of the variable that occurs repeatedly after intervals of a fixed length. These periodic points play a role in the theories of Fatou and Julia sets. Let be the complex quadric mapping, where and are complex numbers. Notationally, is the -fold composition of with itself (not to be confused with the th derivative of )—that is, the value after the k-th iteration of the function Thus Periodic points of a complex quadratic mapping of period are points of the dynamical plane such that where is the smallest positive integer for which the equation holds at that z. We can introduce a new function: so periodic points are zeros of function : points z satisfying which is a polynomial of degree The degree of the polynomial describing periodic points is so it has exactly complex roots (= periodic points), counted with multiplicity. The multiplier (or eigenvalue, derivative) of a rational map iterated times at cyclic point is defined as: where is the first derivative of with respect to at . Because the multiplier is the same at all periodic points on a given orbit, it is called a multiplier of the periodic orbit. The multiplier is: a complex number; invariant under conjugation of any rational map at its fixed point; used to check stability of periodic (also fixed) points with stability index A periodic point is attracting when super-attracting when attracting but not super-attracting when indifferent when rationally indifferent or parabolic if is a root of unity; irrationally indifferent if but multiplier is not a root of unity; repelling when Periodic points that are attracting are always in the Fatou set; that are repelling are in the Julia set; that are indifferent fixed points may be in one or the other.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.