Wender Taxol total synthesis in organic chemistry describes a Taxol total synthesis (one of six to date) by the group of Paul Wender at Stanford University published in 1997. This synthesis has much in common with the Holton Taxol total synthesis in that it is a linear synthesis starting from a naturally occurring compound with ring construction in the order A,B,C,D. The Wender effort is shorter by approximately 10 steps.
Raw materials for the preparation of Taxol by this route include verbenone, prenyl bromine, allyl bromide, propiolic acid, Gilman reagent, and Eschenmoser's salt.
The taxol synthesis started from the terpene verbenone 1 in Scheme 1, which is the oxidation product of naturally occurring α-pinene and forming ring A. Construction of ring B started with abstraction of the pendant methyl group proton by potassium tert-butoxide (conjugated anion is formed) followed by nucleophilic displacement of the bromine atom in prenyl bromide 2 to form diene 3. Ozonolysis of the prenyl group (more electron-rich than the internal double bond) formed aldehyde 4, which, after isomerization or photorearrangement to the chrysanthenone 5, was reacted with the lithium salt (via LDA) of the ethyl ester of propiolic acid 6 in a nucleophilic addition to the alcohol 7. This compound was not isolated but trapped in situ with trimethylsilyl chloride to the silyl ether 9. In the next step, Gilman reagent 8 is a methylating reagent in nucleophilic conjugate addition through the alkyne group to the ketone group, which formed the alcohol 10. The silyl ether protective group was removed by reaction with acetic acid to alcohol 11, which was then oxidized to the ketone 12 with RuCl2(PPh3)3 and NMO as the sacrificial catalyst. The acyloin group in 13 was introduced by KHMDS and Davis’ oxaziridine (see Holton Taxol total synthesis for another use of this system) and its hydroxyl group together with the ester group were reduced by lithium aluminium hydride to tetrol 14.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The asymmetric synthesis of fine chemicals is a research topic of growing importance for the synthesis of modern materials, drugs and agrochemicals. In this lecture, the concepts of asymmetric catalys
La première partie du cours décrit les méthodes classiques de synthèse asymétrique. La seconde partie du cours traite des stratégies de rétrosynthèse basées sur l'approche par disconnection.
Complex polycyclic natural products are chosen to illustrate the evolution of the state-of-the-art of the field, the interplay between strategy and new reactions as well as the importance of implement
The Nicolaou Taxol total synthesis, published by K. C. Nicolaou and his group in 1994 concerns the total synthesis of taxol. Taxol is an important drug in the treatment of cancer but also expensive because the compound is harvested from a scarce resource, namely the pacific yew. This synthetic route to taxol is one of several; other groups have presented their own solutions, notably the group of Holton with a linear synthesis starting from borneol, the Samuel Danishefsky group starting from the Wieland-Miescher ketone and the Wender group from pinene.
Paclitaxel total synthesis in organic chemistry is a major ongoing research effort in the total synthesis of paclitaxel (Taxol). This diterpenoid is an important drug in the treatment of cancer but, also expensive because the compound is harvested from a scarce resource, namely the Pacific yew (Taxus brevifolia). Not only is the synthetic reproduction of the compound itself of great commercial and scientific importance, but it also opens the way to paclitaxel derivatives not found in nature but with greater potential.
Organic synthesis is a special branch of chemical synthesis and is concerned with the intentional construction of organic compounds. Organic molecules are often more complex than inorganic compounds, and their synthesis has developed into one of the most important branches of organic chemistry. There are several main areas of research within the general area of organic synthesis: total synthesis, semisynthesis, and methodology.
The first chapter of this thesis describe the development of a general synthesis of ynimines, an under-exploited motif in organic chemistry. In the presence of an inexpensive copper catalyst and 2,2'-biquinoline, reaction of easily accessible O-acyloximes ...
The development of a titanium(III)-mediated cascade electrocyclisation/rearrangement for theenantioselective total synthesis of indole alkaloids (+)-condyfoline and (-)-tubifoline serve as the basisof the first chapter of this thesis. An introduction will ...
Indole is one of the most important heterocycles widely present in bioactive natural products, pharmaceuticals, agrochemicals and materials. Being easily accessible, the 2-nitrostyrenes are attractive starting materials for the indole synthesis and the Cad ...