Concept

Java performance

Summary
In software development, the programming language Java was historically considered slower than the fastest 3rd generation typed languages such as C and C++. The main reason being a different language design, where after compiling, Java programs run on a Java virtual machine (JVM) rather than directly on the computer's processor as native code, as do C and C++ programs. Performance was a matter of concern because much business software has been written in Java after the language quickly became popular in the late 1990s and early 2000s. Since the late 1990s, the execution speed of Java programs improved significantly via introduction of just-in-time compilation (JIT) (in 1997 for Java 1.1), the addition of language features supporting better code analysis, and optimizations in the JVM (such as HotSpot becoming the default for Sun's JVM in 2000). Hardware execution of Java bytecode, such as that offered by ARM's Jazelle, was also explored to offer significant performance improvements. The performance of a Java bytecode compiled Java program depends on how optimally its given tasks are managed by the host Java virtual machine (JVM), and how well the JVM exploits the features of the computer hardware and operating system (OS) in doing so. Thus, any Java performance test or comparison has to always report the version, vendor, OS and hardware architecture of the used JVM. In a similar manner, the performance of the equivalent natively compiled program will depend on the quality of its generated machine code, so the test or comparison also has to report the name, version and vendor of the used compiler, and its activated compiler optimization directives. Many optimizations have improved the performance of the JVM over time. However, although Java was often the first virtual machine to implement them successfully, they have often been used in other similar platforms as well. Early JVMs always interpreted Java bytecodes. This had a large performance penalty of between a factor 10 and 20 for Java versus C in average applications.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.