Concept

Fixed-point property

Summary
A mathematical object X has the fixed-point property if every suitably well-behaved mapping from X to itself has a fixed point. The term is most commonly used to describe topological spaces on which every continuous mapping has a fixed point. But another use is in order theory, where a partially ordered set P is said to have the fixed point property if every increasing function on P has a fixed point. Let A be an object in the C. Then A has the fixed-point property if every morphism (i.e., every function) has a fixed point. The most common usage is when C = Top is the . Then a topological space X has the fixed-point property if every continuous map has a fixed point. In the , the objects with the fixed-point property are precisely the singletons. The closed interval [0,1] has the fixed point property: Let f: [0,1] → [0,1] be a continuous mapping. If f(0) = 0 or f(1) = 1, then our mapping has a fixed point at 0 or 1. If not, then f(0) > 0 and f(1) − 1 < 0. Thus the function g(x) = f(x) − x is a continuous real valued function which is positive at x = 0 and negative at x = 1. By the intermediate value theorem, there is some point x0 with g(x0) = 0, which is to say that f(x0) − x0 = 0, and so x0 is a fixed point. The open interval does not have the fixed-point property. The mapping f(x) = x2 has no fixed point on the interval (0,1). The closed interval is a special case of the closed disc, which in any finite dimension has the fixed-point property by the Brouwer fixed-point theorem. A retract A of a space X with the fixed-point property also has the fixed-point property. This is because if is a retraction and is any continuous function, then the composition (where is inclusion) has a fixed point. That is, there is such that . Since we have that and therefore A topological space has the fixed-point property if and only if its identity map is universal. A product of spaces with the fixed-point property in general fails to have the fixed-point property even if one of the spaces is the closed real interval.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.