Concept

Dewar–Chatt–Duncanson model

The Dewar–Chatt–Duncanson model is a model in organometallic chemistry that explains the chemical bonding in transition metal alkene complexes. The model is named after Michael J. S. Dewar, Joseph Chatt and L. A. Duncanson. The alkene donates electron density into a π-acid metal d-orbital from a π-symmetry bonding orbital between the carbon atoms. The metal donates electrons back from a (different) filled d-orbital into the empty π* antibonding orbital. Both of these effects tend to reduce the carbon-carbon bond order, leading to an elongated C−C distance and a lowering of its vibrational frequency. In Zeise's salt K[PtCl3(C2H4)].H2O the C−C bond length has increased to 134 picometres from 133 pm for ethylene. In the nickel compound Ni(C2H4)(PPh3)2 the value is 143 pm. The interaction also causes carbon atoms to "rehybridise" from sp2 towards sp3, which is indicated by the bending of the hydrogen atoms on the ethylene back away from the metal. In silico calculations show that 75% of the binding energy is derived from the forward donation and 25% from backdonation. This model is a specific manifestation of the more general π backbonding model.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.