Concept

Coercivité

In mathematics, a coercive function is a function that "grows rapidly" at the extremes of the space on which it is defined. Depending on the context different exact definitions of this idea are in use. A vector field f : Rn → Rn is called coercive if where "" denotes the usual dot product and denotes the usual Euclidean norm of the vector x. A coercive vector field is in particular norm-coercive since for , by Cauchy–Schwarz inequality. However a norm-coercive mapping f : Rn → Rn is not necessarily a coercive vector field. For instance the rotation f : R2 → R2, f(x) = (−x2, x1) by 90° is a norm-coercive mapping which fails to be a coercive vector field since for every . A self-adjoint operator where is a real Hilbert space, is called coercive if there exists a constant such that for all in A bilinear form is called coercive if there exists a constant such that for all in It follows from the Riesz representation theorem that any symmetric (defined as for all in ), continuous ( for all in and some constant ) and coercive bilinear form has the representation for some self-adjoint operator which then turns out to be a coercive operator. Also, given a coercive self-adjoint operator the bilinear form defined as above is coercive. If is a coercive operator then it is a coercive mapping (in the sense of coercivity of a vector field, where one has to replace the dot product with the more general inner product). Indeed, for big (if is bounded, then it readily follows); then replacing by we get that is a coercive operator. One can also show that the converse holds true if is self-adjoint. The definitions of coercivity for vector fields, operators, and bilinear forms are closely related and compatible. A mapping between two normed vector spaces and is called norm-coercive if and only if More generally, a function between two topological spaces and is called coercive if for every compact subset of there exists a compact subset of such that The composition of a bijective proper map followed by a coercive map is coercive.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.