A seismic wave is a mechanical wave of acoustic energy that travels through the Earth or another planetary body. It can result from an earthquake (or generally, a quake), volcanic eruption, magma movement, a large landslide, and a large man-made explosion that produces low-frequency acoustic energy. Seismic waves are studied by seismologists, who record the waves using seismometers, hydrophones (in water), or accelerometers. Seismic waves are distinguished from seismic noise (ambient vibration), which is persistent low-amplitude vibration arising from a variety of natural and anthropogenic sources.
The propagation velocity of a seismic wave depends on density and elasticity of the medium as well as the type of wave. Velocity tends to increase with depth through Earth's crust and mantle, but drops sharply going from the mantle to Earth's outer core.
Earthquakes create distinct types of waves with different velocities. When recorded by a seismic observatory, their different travel times help scientists locate the quake's hypocenter. In geophysics, the refraction or reflection of seismic waves is used for research into Earth's internal structure. Scientists sometimes generate and measure vibrations to investigate shallow, subsurface structures.
Among the many types of seismic waves, one can make a broad distinction between body waves, which travel through the Earth, and surface waves, which travel at the Earth's surface.
Other modes of wave propagation exist than those described in this article; though of comparatively minor importance for earth-borne waves, they are important in the case of asteroseismology.
Body waves travel through the interior of the Earth.
Surface waves travel across the surface. Surface waves decay more slowly with distance than body waves which travel in three dimensions.
Particle motion of surface waves is larger than that of body waves, so surface waves tend to cause more damage.
Body waves travel through the interior of the Earth along paths controlled by the material properties in terms of density and modulus (stiffness).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
Ce cours de deux semestres donne une introduction à la Physique du solide, à la structure cristalline, aux vibrations du réseau, aux propriétés électroniques, de transport thermique et électrique ains
This course presents the classical and new approaches required to study the source mechanisms of earthquakes, combining theory and observations in a unified methodology, with a key focus on the mechan
NOTOC In seismology and other areas involving elastic waves, S waves, secondary waves, or shear waves (sometimes called elastic S waves) are a type of elastic wave and are one of the two main types of elastic body waves, so named because they move through the body of an object, unlike surface waves. S waves are transverse waves, meaning that the direction of particle movement of a S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress.
Seismology (saɪzˈmɒlədʒi,_saɪs-; from Ancient Greek σεισμός (seismós) meaning "earthquake" and -λογία (-logía) meaning "study of") is the scientific study of earthquakes (or generally, quakes) and the propagation of elastic waves through the Earth or other planetary bodies. It also includes studies of earthquake environmental effects such as tsunamis as well as diverse seismic sources such as volcanic, tectonic, glacial, fluvial, oceanic, atmospheric, and artificial processes such as explosions.
A P wave (primary wave or pressure wave) is one of the two main types of elastic body waves, called seismic waves in seismology. P waves travel faster than other seismic waves and hence are the first signal from an earthquake to arrive at any affected location or at a seismograph. P waves may be transmitted through gases, liquids, or solids. The name P wave can stand for either pressure wave (as it is formed from alternating compressions and rarefactions) or primary wave (as it has high velocity and is therefore the first wave to be recorded by a seismograph).
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Masonry aggregates, which emerged as layouts of cities and villages became denser, make up historical centres all over the world. In these aggregates, neighbouring structures may share structural walls that are joined at the interfaces by mortar or interlo ...
Springer2024
Mitigating the energy requirements of artificial intelligence requires novel physical substrates for computation. Phononic metamaterials have vanishingly low power dissipation and hence are a prime candidate for green, always-on computers. However, their u ...
Weinheim2024
,
Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induc ...