Concept

Idéographie

thumb|Page de titre de l'ouvrage de Frege de 1879, Begriffschrift (Idéographie). L'idéographie (Begriffsschrift) est un langage entièrement formalisé inventé par le logicien Gottlob Frege et qui a pour but de représenter de manière parfaite la logique mathématique. Le projet d'un langage entièrement formalisé n'est pas nouveau : Leibniz en avait développé un, qui n'aboutit pas, sous le nom de caractéristique universelle. La première publication portant sur l'idéographie est le texte Idéographie (Begriffsschrift – Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens) publié en 1879. Frege continua à travailler à l'idéographie dans Les Fondements de l'arithmétique (Die Grundlagen der Arithmetik, 1884). Ce langage utilise le plan comme espace de travail et ne se limite pas à la ligne (comme la logique d'aujourd'hui, basée sur les Principia Mathematica de Bertrand Russell et Alfred North Whitehead qui en est tributaire). Ce langage est aujourd'hui inutilisé même s'il en subsiste des traces par exemple dans le symbole de négation « ¬ », de conséquence « ⊢ » ou de tautologie modélisation « ⊨ ». L’implication est exprimée par Frege ainsi, quand on a deux propositions A et B, on a 4 cas : A est affirmé et B est affirmé A est affirmé et B est nié A est nié et B est affirmé A est nié et B est nié L’implication B implique A (B⊃A) nie le troisième cas, en d’autres termes il est faux qu’on a à la fois B vrai et A faux. L'idéographie est construite sur l’implication, ce qui facilite l’usage de la règle du détachement, c'est-à-dire que si A est vraie et si A implique B est vraie, alors B est aussi vraie (A ∧ (A⊃B)) ⊃ B. Elle contient le quantificateur universel ∀, codé par un petit creux surmonté d'une lettre gothique qui remplace le trait ─ (pas disponible en unicode). Le carré logique est aussi présent. Elle contient aussi la définition, codée dans l'idéographie par le caractère unicode suivant : ╞═.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (1)

Demand-based Asset Pricing: Theory, Estimation and Applications

Philippe van der Beck

This thesis investigates the relationship between investors' demand shocks and asset pricesthrough the use of data on portfolio holdings. In three chapters, I study the theory, estimation,and application of demand-based asset pricing models, which incorpor ...
EPFL2023
Concepts associés (16)
Logique
La logique — du grec , qui est un terme dérivé de signifiant à la fois « raison », « langage » et « raisonnement » — est, dans une première approche, l'étude de l'inférence, c'est-à-dire des règles formelles que doit respecter toute argumentation correcte. Le terme aurait été utilisé pour la première fois par Xénocrate. La logique antique se décompose d'abord en dialectique et rhétorique. Elle est depuis l'Antiquité l'une des grandes disciplines de la philosophie, avec l'éthique (philosophie morale) et la physique (science de la nature).
Fondements des mathématiques
Les fondements des mathématiques sont les principes de la philosophie des mathématiques sur lesquels est établie cette science. Le logicisme a été prôné notamment par Gottlob Frege et Bertrand Russell. La mathématique pure présente deux caractéristiques : la généralité de son discours et la déductibilité du discours mathématique . En ce que le discours mathématique ne prétend qu’à une vérité formelle, il est possible de réduire les mathématiques à la logique, les lois logiques étant les lois du « vrai ».
Notations infixée, préfixée, polonaise et postfixée
Les notations infixée (ou infixe), préfixée (ou préfixe) et postfixée (ou postfixe) sont des formes d'écritures d'expressions algébriques qui se distinguent par la position relative qu'y prennent les opérateurs et leurs opérandes. Un opérateur est écrit avant ses opérandes en notation préfixée, entre ses opérandes en notation infixée et après ses opérandes en notation postfixée. La notation infixée n'a de sens que pour les opérateurs prenant exactement deux opérandes. C'est la notation la plus courante des opérateurs binaires en mathématiques.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.