Cuspate forelands, also known as cuspate barriers or nesses in Britain, are geographical features found on coastlines and lakeshores that are created primarily by longshore drift. Formed by accretion and progradation of sand and shingle, they extend outwards from the shoreline in a triangular shape.
Some cuspate forelands may be stabilised by vegetation, while others may migrate down the shoreline. Because some cuspate forelands provide an important habitat for flora and fauna, effective management is required to reduce the impacts from both human activities and physical factors such as climate change and sea level rise.
The debate involving how cuspate forelands form is ongoing. However, the most widely accepted process of formation involves long shore drift. Where longshore drift occurs in opposite directions, two spits merge into a triangular protrusion along a coastline or lakeshore. Their formation is also dependent on dominant and prevailing winds working in opposite directions. Formation can also occur when waves are diffracted around a barrier.
Cuspate forelands can form both along coastlines and along lakeshores. Those formed along coastlines can be in the lee of an offshore island, along a coastline that has no islands in the vicinity, or at a stream mouth where disposition occurs.
A cuspate foreland can form in a strait or along a coastline that has no islands or shoals in the area. In this case, longshore drift as well as prevailing wind and waves bring sediment together from opposite directions. If there is a large angle between the waves and the shoreline, the sediment converges, accumulates, and forms beach ridges. Over time, a cuspate foreland forms as a result of continued accretion and progradation. An example of this type of cuspate foreland is the one found at Dungeness along the southern coast of Britain. This cuspate foreland has formed as a result of the merging of SW waves from the English Channel, and waves from the east from the Strait of Dover.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A coastal development hazard is something that affects the natural environment by human activities and products. As coasts become more developed, the vulnerability component of the equation increases as there is more value at risk to the hazard. The likelihood component of the equation also increases in terms of there being more value on the coast so a higher chance of hazardous situation occurring. Fundamentally humans create hazards with their presence.
Beach evolution occurs at the shoreline where sea, lake or river water is eroding the land. Beaches exist where sand accumulated from centuries-old, recurrent processes that erode rocky and sedimentary material into sand deposits. River deltas deposit silt from upriver, accreting at the river's outlet to extend lake or ocean shorelines. Catastrophic events such as tsunamis, hurricanes, and storm surges accelerate beach erosion. Beach accretion and erosion Tsunamis, potentially enormous waves often caused by earthquakes, have great erosional and sediment-reworking potential.
Between 1901 and 2018, the average global sea level rose by , or an average of 1–2 mm per year. This rate accelerated to 4.62 mm/yr for the decade 2013–2022. Climate change due to human activities is the main cause. Between 1993 and 2018, thermal expansion of water accounted for 42% of sea level rise. Melting temperate glaciers accounted for 21%, with Greenland accounting for 15% and Antarctica 8%. Sea level rise lags changes in the Earth's temperature.
The proper understanding of gravel-bed river dynamics is a crucial issue for the effective protection against related natural hazards, design of hydraulic structures, and preservation of their high ecological value in mountain regions. However, despite mor ...
EPFL2017
, , ,
Reservoir sedimentation is one of the main challenges in the sustainable operation of large reservoirs because it causes volume loss, affecting hydropower production capacity, dam safety, and flood management. To ensure the sustainability of deep reservoir ...
CRC Press/Balkema2023
, , , ,
Chancy-Pougny is a run-of-river dam on the Swiss–French border constructed in the early 1920s. Since its commissioning, the operation of the four spillway gates has been responsible for a progressive erosion of the stilling basin. The future scour potentia ...