A petrographic microscope is a type of optical microscope used to identify rocks and minerals in thin sections. The microscope is used in optical mineralogy and petrography, a branch of petrology which focuses on detailed descriptions of rocks. The method includes aspects of polarized light microscopy (PLM).
TOC
Depending on the grade of observation required, petrological microscopes are derived from conventional brightfield microscopes of similar basic capabilities by:
Adding a Nicol prism polarizer filter to the light path beneath the sample slide
Replacing the normal stage with a circular rotating stage (typically graduated with vernier scales for reading orientations to better than 1 degree of arc)
Adding a second rotatable and removable Nicol prism filter, called the analyzer, to the light path between objective and eyepiece
Adding a phase telescope, also known as a Bertrand lens, which allows the viewer to see conoscopic interference patterns
Adding a slot for insertion of wave plates
Petrographic microscopes are constructed with optical parts that do not add unwanted polarizing effects due to strained glass, or polarization by reflection in prisms and mirrors. These special parts add to the cost and complexity of the microscope. However, a "simple polarizing" microscope is easily made by adding inexpensive polarizing filters to a standard biological microscope, often with one in a filter holder beneath the condenser, and a second inserted beneath the head or eyepiece. These can be sufficient for many non-quantitative purposes.
The two Nicol prisms (occasionally referred to as nicols) of the petrographic microscope have their polarizing planes oriented perpendicular to one another. When only an isotropic material such as air, water, or glass exists between the filters, all light is blocked, but most crystalline materials and minerals change the polarizing light directions, allowing some of the altered light to pass through the analyzer to the viewer.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Optical mineralogy is the study of minerals and rocks by measuring their optical properties. Most commonly, rock and mineral samples are prepared as thin sections or grain mounts for study in the laboratory with a petrographic microscope. Optical mineralogy is used to identify the mineralogical composition of geological materials in order to help reveal their origin and evolution.
Petrology () is the branch of geology that studies rocks and the conditions under which they form. Petrology has three subdivisions: igneous, metamorphic, and sedimentary petrology. Igneous and metamorphic petrology are commonly taught together because both make heavy use of chemistry, chemical methods, and phase diagrams. Sedimentary petrology is commonly taught together with stratigraphy because it deals with the processes that form sedimentary rock. Modern sedimentary petrology is making increasing use of chemisty.
In geology, rock (or stone) is any naturally occurring solid mass or aggregate of minerals or mineraloid matter. It is categorized by the minerals included, its chemical composition, and the way in which it is formed. Rocks form the Earth's outer solid layer, the crust, and most of its interior, except for the liquid outer core and pockets of magma in the asthenosphere. The study of rocks involves multiple subdisciplines of geology, including petrology and mineralogy.
We introduce a new experimental system to study the effects of pre-stretch on the buckling patterns that emerge from the biaxial compression of elastomeric bilayer shells. Upon fabrication of the samples, releasing the pre-stretch in the substrate through ...
Hydroxyapatite (Ca-10(PO4)(6)(OH)(2), HAP), both as a synthetic material and as a constituent of bone char, can serve as an effective and relatively inexpensive filter material for fluoride (F-) removal from drinking water in low-income countries. Fluoride ...
The present invention relates to a device including a ferroic material having a ferroelectric order parameter and including at least two domains, as well as a first and second electrode in electrical contact with the ferroic material. The device is configu ...