Summary
Task parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrently performed by processes or threads—across different processors. In contrast to data parallelism which involves running the same task on different components of data, task parallelism is distinguished by running many different tasks at the same time on the same data. A common type of task parallelism is pipelining, which consists of moving a single set of data through a series of separate tasks where each task can execute independently of the others. In a multiprocessor system, task parallelism is achieved when each processor executes a different thread (or process) on the same or different data. The threads may execute the same or different code. In the general case, different execution threads communicate with one another as they work, but this is not a requirement. Communication usually takes place by passing data from one thread to the next as part of a workflow. As a simple example, if a system is running code on a 2-processor system (CPUs "a" & "b") in a parallel environment and we wish to do tasks "A" and "B", it is possible to tell CPU "a" to do task "A" and CPU "b" to do task "B" simultaneously, thereby reducing the run time of the execution. The tasks can be assigned using conditional statements as described below. Task parallelism emphasizes the distributed (parallelized) nature of the processing (i.e. threads), as opposed to the data (data parallelism). Most real programs fall somewhere on a continuum between task parallelism and data parallelism. Thread-level parallelism (TLP) is the parallelism inherent in an application that runs multiple threads at once. This type of parallelism is found largely in applications written for commercial servers such as databases.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.