Ice-minus bacteria is a common name given to a variant of the common bacterium Pseudomonas syringae (P. syringae). This strain of P. syringae lacks the ability to produce a certain surface protein, usually found on wild-type P. syringae. The "ice-plus" protein (INA protein, "Ice nucleation-active" protein) found on the outer bacterial cell wall acts as the nucleating centers for ice crystals. This facilitates ice formation, hence the designation "ice-plus". The ice-minus variant of P. syringae is a mutant, lacking the gene responsible for ice-nucleating surface protein production. This lack of surface protein provides a less favorable environment for ice formation. Both strains of P. syringae occur naturally, but recombinant DNA technology has allowed for the synthetic removal or alteration of specific genes, enabling the ice-minus strain to be created from the ice-plus strain in the lab. The ice nucleating nature of P. syringae incites frost development, freezing the buds of the plant and destroying the occurring crop. The introduction of an ice-minus strain of P. syringae to the surface of plants would reduce the amount of ice nucleate present, rendering higher crop yields. The recombinant form was developed as a commercial product known as Frostban. Field-testing of Frostban in 1987 was the first release of a genetically modified organism into the environment. The testing was very controversial and drove the formation of US biotechnology policy. Frostban was never marketed. To systematically create the ice-minus strain of P. syringae, its ice-forming gene must be isolated, amplified, deactivated and reintroduced into P. syringae bacterium. The following steps are often used to isolate and generate ice-minus strains of P. syringae: Digest P. syringaes DNA with restriction enzymes. Insert the individual DNA pieces into a plasmid. Pieces will insert randomly, allowing for different variations of recombinant DNA to be produced. Transform the bacterium Escherichia coli (E.coli) with the recombinant plasmid.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)

Multigene expression in stable CHO cell pools generated with the piggyBac transposon system

Florian Maria Wurm, David Hacker, Sowmya Balasubramanian

Heterogenous populations of recombinant cells (cell pools) stably expressing 1-4 transgenes were generated from Chinese hamster overy (CHO) cells with the piggyBac (PB) transposon system. The cell pools produced different combinations of three model protei ...
American Chemical Society2016

Role of non-specific DNA in reducing coding DNA requirement for transient gene expression with CHO and HEK-293E cells

Florian Maria Wurm, David Hacker, Lucia Baldi Unser, Yashas Rajendra, Divor Kiseljak, Sagar Shashidhar Manoli

Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the TGE volumetric productivity has improved significantly over the past decade, the amount of plasmid DNA (pDNA) needed for transfection ...
2012

Leaching and transformability of transgenic DNA in unsaturated soil columns

Unsaturated soil columns were used to examine the transport of the plasmid pLEPO1 and plant DNA (transplastomic tobacco DNA), both carrying an antibiotic resistance gene (aadA gene), and the capacity of bacteria to incorporate the gene in their genome afte ...
2010
Related concepts (2)
Genetic engineering
Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA.
Recombinant DNA
Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination (such as molecular cloning) that bring together genetic material from multiple sources, creating sequences that would not otherwise be found in the genome. Recombinant DNA is the general name for a piece of DNA that has been created by combining two or more fragments from different sources. Recombinant DNA is possible because DNA molecules from all organisms share the same chemical structure, differing only in the nucleotide sequence.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.