Concept

Escherichia virus T4

Summary
Escherichia virus T4 is a species of bacteriophages that infect Escherichia coli bacteria. It is a double-stranded DNA virus in the subfamily Tevenvirinae from the family Myoviridae. T4 is capable of undergoing only a lytic life cycle and not the lysogenic life cycle. The species was formerly named T-even bacteriophage, a name which also encompasses, among other strains (or isolates), Enterobacteria phage T2, Enterobacteria phage T4 and Enterobacteria phage T6. Dating back to the 1940s and continuing today, T-even phages are considered the best studied model organisms. Model organisms are usually required to be simple with as few as five genes. Yet, T-even phages are in fact among the largest and highest complexity virus, in which these phage's genetic information is made up of around 300 genes. Coincident with their complexity, T-even viruses were found to have the unusual base hydroxymethylcytosine (HMC) in place of the nucleic acid base cytosine. The T4 virus's double-stranded DNA genome is about 169 kbp long and encodes 289 proteins. The T4 genome is terminally redundant. Upon DNA replication, long multi-genome length concatemers are formed, perhaps by a rolling circle mechanism of replication. When packaged, the concatemer is cut at unspecific positions of the same length, leading to several genomes that represent circular permutations of the original. The T4 genome bears eukaryote-like intron sequences. The Shine-Dalgarno sequence GAGG dominates in virus T4 early genes, whereas the sequence GGAG is a target for the T4 endonuclease RegB that initiates the early mRNA degradation. T4 is a relatively large virus, at approximately 90 nm wide and 200 nm long (most viruses range from 25 to 200 nm in length). The DNA genome is held in an icosahedral head, also known as a capsid. The T4's tail is hollow so that it can pass its nucleic acid into the cell it is infecting after attachment. Myoviridae phages like T4 have complex contractile tail structures with a large number of proteins involved in the tail assembly and function.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.