Concept

Superperfect group

In mathematics, in the realm of group theory, a group is said to be superperfect when its first two homology groups are trivial: H1(G, Z) = H2(G, Z) = 0. This is stronger than a perfect group, which is one whose first homology group vanishes. In more classical terms, a superperfect group is one whose abelianization and Schur multiplier both vanish; abelianization equals the first homology, while the Schur multiplier equals the second homology. The first homology group of a group is the abelianization of the group itself, since the homology of a group G is the homology of any Eilenberg–MacLane space of type K(G, 1); the fundamental group of a K(G, 1) is G, and the first homology of K(G, 1) is then abelianization of its fundamental group. Thus, if a group is superperfect, then it is perfect. A finite perfect group is superperfect if and only if it is its own universal central extension (UCE), as the second homology group of a perfect group parametrizes central extensions. For example, if G is the fundamental group of a homology sphere, then G is superperfect. The smallest finite, non-trivial superperfect group is the binary icosahedral group (the fundamental group of the Poincaré homology sphere). The alternating group A5 is perfect but not superperfect: it has a non-trivial central extension, the binary icosahedral group (which is in fact its UCE) is superperfect. More generally, the projective special linear groups PSL(n, q) are simple (hence perfect) except for PSL(2, 2) and PSL(2, 3), but not superperfect, with the special linear groups SL(n,q) as central extensions. This family includes the binary icosahedral group (thought of as SL(2, 5)) as UCE of A5 (thought of as PSL(2, 5)). Every acyclic group is superperfect, but the converse is not true: the binary icosahedral group is superperfect, but not acyclic.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (5)
Covering groups of the alternating and symmetric groups
In the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were classified in : for n ≥ 4, the covering groups are 2-fold covers except for the alternating groups of degree 6 and 7 where the covers are 6-fold. For example the binary icosahedral group covers the icosahedral group, an alternating group of degree 5, and the binary tetrahedral group covers the tetrahedral group, an alternating group of degree 4.
Multiplicateur de Schur
En mathématiques, plus précisément en théorie des groupes, le multiplicateur de Schur est le deuxième groupe d'homologie d'un groupe G à coefficients entiers, Si le groupe est présenté en termes d'un groupe libre F sur un ensemble de générateurs, et d'un sous-groupe normal R engendré par un ensemble de relations sur les générateurs, de sorte que alors, par la formule d'homologie entière de Hopf, le multiplicateur de Schur est isomorphe à où [A, B] est le sous-groupe engendré par les commutateurs abab pour a
Binary icosahedral group
In mathematics, the binary icosahedral group 2I or is a certain nonabelian group of order 120. It is an extension of the icosahedral group I or (2,3,5) of order 60 by the cyclic group of order 2, and is the of the icosahedral group under the 2:1 covering homomorphism of the special orthogonal group by the spin group. It follows that the binary icosahedral group is a discrete subgroup of Spin(3) of order 120. It should not be confused with the full icosahedral group, which is a different group of order 120, and is rather a subgroup of the orthogonal group O(3).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.