Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Nitrox refers to any gas mixture composed (excepting trace gases) of nitrogen and oxygen. This includes atmospheric air, which is approximately 78% nitrogen, 21% oxygen, and 1% other gases, primarily argon. In the usual application, underwater diving, nitrox is normally distinguished from air and handled differently. The most common use of nitrox mixtures containing oxygen in higher proportions than atmospheric air is in scuba diving, where the reduced partial pressure of nitrogen is advantageous in reducing nitrogen uptake in the body's tissues, thereby extending the practicable underwater dive time by reducing the decompression requirement, or reducing the risk of decompression sickness (also known as the bends). Nitrox is used to a lesser extent in surface-supplied diving, as these advantages are reduced by the more complex logistical requirements for nitrox compared to the use of simple low-pressure compressors for breathing gas supply. Nitrox can also be used in hyperbaric treatment of decompression illness, usually at pressures where pure oxygen would be hazardous. Nitrox is not a safer gas than compressed air in all respects; although its use can reduce the risk of decompression sickness, it increases the risks of oxygen toxicity and fire. Though not generally referred to as nitrox, an oxygen-enriched air mixture is routinely provided at normal surface ambient pressure as oxygen therapy to patients with compromised respiration and circulation. Human physiology of underwater diving Decompression (diving)Decompression theory and Decompression practice Reducing the proportion of nitrogen by increasing the proportion of oxygen reduces the risk of decompression sickness for the same dive profile, or allows extended dive times without increasing the need for decompression stops for the same risk. The significant aspect of extended no-stop time when using nitrox mixtures is reduced risk in a situation where breathing gas supply is compromised, as the diver can make a direct ascent to the surface with an acceptably low risk of decompression sickness.
Urs von Gunten, Joanna Maria Houska
Sandrine Gerber, Yann Lavanchy, Céline Marie Anne Journot, Laura Camille Louise Nicolle
Olaf Blanke, Bruno Herbelin, Oliver Alan Kannape, Elisa Canzoneri, Sophie Jacqueline Andrée Betka