**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Proportion (mathematics)

Summary

A proportion is a mathematical statement expressing equality of two ratios.
a and d are called extremes, b and c are called means.
Proportion can be written as , where ratios are expressed as fractions.
Such a proportion is known as geometrical proportion, not to be confused with arithmetical proportion and harmonic proportion.
Fundamental rule of proportion. This rule is sometimes called Means‐Extremes Property. If the ratios are expressed as fractions, then the same rule can be phrased in terms of the equality of "cross-products" and is called Cross‐Products Property.
If , then
If , then
If , then
If , then
If , then
A Greek mathematician Eudoxus provided a definition for the meaning of the equality between two ratios. This definition of proportion forms the subject of Euclid's Book V, where we can read:
Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order.
Later, the realization that ratios are numbers allowed to switch from solving proportions to equations, and from transformation of proportions to algebraic transformations.
An equation of the form is called arithmetic proportion or difference proportion.
Golden ratio
If the means of the geometric proportion are equal, and the rightmost extreme is equal to the difference between the leftmost extreme and a mean, then such a proportion is called harmonic: . In this case the ratio is called golden ratio.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.