**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Linear Algebra: Eigenvalues and Diagonalization

Description

This lecture covers the concepts of eigenvalues, eigenvectors, and diagonalization of matrices. It explains how to find eigenvalues, eigenvectors, and diagonal matrices, emphasizing their importance in linear algebra. The lecture also discusses the process of diagonalization and its applications in solving systems of linear equations.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

In course

Related concepts (119)

MATH-111(d): Linear Algebra

L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.

In mathematics, a system of linear equations (or linear system) is a collection of one or more linear equations involving the same variables. For example, is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by the ordered triple since it makes all three equations valid. The word "system" indicates that the equations should be considered collectively, rather than individually.

In Euclidean geometry, an affine transformation or affinity (from the Latin, affinis, "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments.

In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism. If a linear map is a bijection then it is called a .

In mathematics, a linear combination is an expression constructed from a set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of x and y would be any expression of the form ax + by, where a and b are constants). The concept of linear combinations is central to linear algebra and related fields of mathematics. Most of this article deals with linear combinations in the context of a vector space over a field, with some generalizations given at the end of the article.

In the theory of vector spaces, a set of vectors is said to be if there exists no nontrivial linear combination of the vectors that equals the zero vector. If such a linear combination exists, then the vectors are said to be . These concepts are central to the definition of dimension. A vector space can be of finite dimension or infinite dimension depending on the maximum number of linearly independent vectors. The definition of linear dependence and the ability to determine whether a subset of vectors in a vector space is linearly dependent are central to determining the dimension of a vector space.

Related lectures (1)

Characteristic Polynomials and Similar Matrices

Explores characteristic polynomials, similarity of matrices, and eigenvalues in linear transformations.