At room temperature, mechanical motion driven by the quantum backaction of light has been observed only in pioneering experiments in which an optical restoring force controls the oscillator stiffness1,2. For solid-state mechanical resonators in which oscil ...
Photonic integrated circuits are paving the way for novel on-chip functionalities with diverse applications in communication, computing, and beyond. The integration of on-chip light sources, especially single-mode lasers, is crucial for advancing those pho ...
In the past few years, Machine Learning (ML) techniques have ushered in a paradigm shift, allowing the harnessing of ever more abundant sources of data to automate complex tasks. The technical workhorse behind these important breakthroughs arguably lies in ...
The COVID-19 pandemic has led to a significant increase in working from home worldwide, making the workfrom-home (WFH) setting a crucial context for studying the influence of indoor environmental quality (IEQ) on workers' well-being and productivity. A nar ...
Reinforcement learning (RL) is crucial for learning to adapt to new environments. In RL, the prediction error is an important component that compares the expected and actual rewards. Dopamine plays a critical role in encoding these prediction errors. In my ...
Laser-based mid-infrared (mid-IR) photothermal spectroscopy (PTS) represents a selective, fast, and sensitive analytical technique. Recent developments in laser design permits the coverage of wider spectral regions in combination with higher power, enablin ...
We propose a comparative study of three different methods aimed at optimizing existing groundwater monitoring networks. Monitoring piezometric heads in subsurface porous formations is crucial at regional scales to properly characterize the relevant subsurf ...
This paper introduces a novel method for data-driven robust control of nonlinear systems based on the Koopman operator, utilizing Integral Quadratic Constraints (IQCs). The Koopman operator theory facilitates the linear representation of nonlinear system d ...
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social in ...
In this thesis we explore the applications of projective geometry, a mathematical theory of the relation between 3D scenes and their 2D images, in modern learning-based computer vision systems. This is an interesting research question which contradicts the ...