Optimization arises naturally when process performance needs improvement. This is often the case in industry because of competition – the product has to be proposed at the lowest possible cost. From the point of view of control, optimization consists in designing a control policy that best satisfies the chosen objectives. Most optimization schemes rely on a process model, which, however, is always an approximation of the real plant. Hence, the resulting optimal control policy is suboptimal for the real process. The fact that accurate models can be prohibitively expensive to build has triggered the development of a field of research known as Optimization under Uncertainty. One promising approach in this field proposes to draw a strong parallel between optimization under uncertainty and control. This approach, labeled NCO tracking, considers the Necessary Conditions of Optimality (NCO) of the optimization problem as the controlled outputs. The approach is still under development, and the present work is today's most recent contribution to this development. The problem of NCO tracking can be divided into several subproblems that have been studied separately in earlier works. Two main categories can be distinguished : (i) tracking the NCO associated with active constraints, and (ii) tracking the NCO associated with sensitivities. Research on the former category is mature. The latter problem is more difficult to solve since the sensitivity part of the NCO cannot be directly measured on the real process. The present work proposes a method to tackle these sensitivity problems based on the theory of Neighboring Extremals (NE). More precisely, NE control provides a way of calculating a first-order approximation to the sensitivity part of the NCO. This idea is developed for static and both nonsingular and singular dynamic optimization problems. The approach is illustrated via simulated examples: steady-state optimization of a continuous chemical reactor, optimal control of a semi-batch reactor, and optimal control of a steered car. Model Predictive Control (MPC) is a control scheme that can accommodate both process constraints and nonlinear process models. The repeated solution of a dynamic optimization problem provides an update of the control variables based on the current state, and therefore provides feedback. One of the major drawbacks of MPC lies in the expensive computations required to update the control policy, which often results in a low sampling frequency for the control loop. This limitation of the sampling frequency can be dramatic for fast systems and for systems exhibiting a strong dispersion between the predicted and the real state such as unstable systems. In the MPC framework, two main methods have been proposed to tackle these difficulties: (i) The use of a pre-stabilizing feedback operating in combination with the MPC scheme, and (ii) the use of robust MPC. The drawback of the former approach is that there exists no systematic way of d
Colin Neil Jones, Wenjie Xu, Bratislav Svetozarevic
Fabio Zoccolan, Gianluigi Rozza