Various forms of real-world data, such as social, financial, and biological networks, can be
represented using graphs. An efficient method of analysing this type of data is to extract
subgraph patterns, such as cliques, cycles, and motifs, from graphs. For ...
We prove that for any triangle-free intersection graph of n axis-parallel line segments in the plane, the independence number alpha of this graph is at least alpha n/4+ohm(root n). We complement this with a construction of a graph in this class satisfying ...
In this paper, we study the problem of learning Graph Neural Networks (GNNs) with Differential Privacy (DP). We propose a novel differentially private GNN based on Aggregation Perturbation (GAP), which adds stochastic noise to the GNN's aggregation functio ...
We study an energy market composed of producers who compete to supply energy to different markets and want to maximize their profits. The energy market is modeled by a graph representing a constrained power network where nodes represent the markets and lin ...
Machine learning has paved the way for the real-time monitoring of complex infrastructure and industrial systems. However, purely data-driven methods have not been able to learn the underlying dynamics and generalize them to operating conditions that have ...
Graph Neural Networks (GNNs) have emerged as a powerful tool for learning on graphs, demonstrating exceptional performance in various domains. However, as GNNs become increasingly popular, new challenges arise. One of the most pressing is the need to ensur ...
Approximate message passing (AMP) algorithms have become an important element of high-dimensional statistical inference, mostly due to their adaptability and concentration properties, the state evolution (SE) equations. This is demonstrated by the growing ...
We study the performance of Markov chains for the q-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis ...
A graph H is a minor of a second graph G if G can be transformed into H by two operations: 1) deleting nodes and/or edges, or 2) contracting edges. Coarse-grained reconfigurable array (CGRA) application mapping is closely related to the graph minor problem ...