Driven by the need for more efficient and seamless integration of physical models and data, physics -informed neural networks (PINNs) have seen a surge of interest in recent years. However, ensuring the reliability of their convergence and accuracy remains ...
Decision-making permeates every aspect of human and societal development, from individuals' daily choices to the complex decisions made by communities and institutions.
Central to effective decision-making is the discipline of optimization, which seeks th ...
In this thesis, we conduct a comprehensive investigation into structural instabilities of both elastic and magneto-elastic beams and shells, resulting in a creative proposal to design a programmable braille reader. Methodologically, we combine numerical si ...
In this thesis we study stability from several viewpoints. After covering the practical importance, the rich history and the ever-growing list of manifestations of stability, we study the following. (i) (Statistical identification of stable dynamical syste ...
The goal of this work is to use anisotropic adaptive finite elements for the numerical simulation of aluminium electrolysis. The anisotropic adaptive criteria are based on a posteriori error estimates derived for simplified problems. First, we consider an ...
In this thesis we will present and analyze randomized algorithms for numerical linear algebra problems. An important theme in this thesis is randomized low-rank approximation. In particular, we will study randomized low-rank approximation of matrix functio ...
Estimating the stress of reinforcing bars and its variations in service conditions can be useful to determine the reserve capacity of structures or to assess the risk of fatigue in the reinforcement. This paper investigates the use crack width measurements ...
In computational hydraulics models, predicting bed topography and bedload transport with sufficient accuracy remains a significant challenge. An accurate assessment of a river's sediment transport rate necessitates a prior understanding of its bed topograp ...
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...