As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
Unsupervised Domain Adaptation Regression (DAR) aims to bridge the domain gap between a labeled source dataset and an unlabelled target dataset for regression problems. Recent works mostly focus on learning a deep feature encoder by minimizing the discrepa ...
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projecti ...
In this paper we demonstrate ultra-high sensitivity silicon nanowires pH and protein sensing on the same Silicon nanowire array platform by using a constant current method and monitoring the drain voltage as function of analyte concentration. The injected ...
Phase transitions in non-Hermitian systems are at the focus of cutting edge theoretical and experimental research. On the one hand, parity-time- (PT-) and anti-PT-symmetric physics have gained ever-growing interest, due to the existence of non-Hermitian sp ...
Linear-Quadratic-Gaussian (LQG) control is a fundamental control paradigm that is studied in various fields such as engineering, computer science, economics, and neuroscience. It involves controlling a system with linear dynamics and imperfect observations ...
The finite element method is a well-established method for the numerical solution of partial differential equations (PDEs), both linear and nonlinear. However, the repeated re -assemblage of finite element matrices for nonlinear PDEs is frequently pointed ...
Sylvester matrix equations are ubiquitous in scientific computing. However, few solution techniques exist for their generalized multiterm version, as they now arise in an increasingly large number of applications. In this work, we consider algebraic parame ...
The locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm is a popular approach for computing a few smallest eigenvalues and the corresponding eigenvectors of a large Hermitian positive definite matrix A. In this work, we propose a mix ...
A new model is proposed for the consolidation of hybrid textiles, in which air entrapment and dissolution are considered. One of the key parameters is tow permeability, which is described by the analytical model of Gebart and validated at very high fibre v ...