Strain Hardening Ultra High Performance Fiber Reinforced Concrete (SH-UHPFRC) were used successfully over the last 8 years in numerous cast in place rehabilitation applications as long lasting waterproofing layers (20 to 30 mm thickness) and, combined with rebar, to increase the structural load bearing capacity of existing bridge decks or building slabs (50 to 70 mm thickness). In composite applications on reinforced concrete substrates, SH-UHPFRC provide a deformation capability (strain hardening) larger than their free shrinkage which makes localized macro cracking at service state very unlikely. On the other hand some specific conditions of microclimatic state of the substrate (moisture and thermal conditions) and climatological (temperature and humidity) of the site such as casting at low temperatures (winter conditions) might increase the autogenous shrinkage and thus eigenstresses of the freshly cast SH-UHPFRC and hinder the development of its tensile strength or/and deformability. Combination of these specific circumstances could compromise the SH-UHPFRC protective functions due to the occurrence of localized macro cracks, making the objective of using SH-UHPFRC as a onetime intervention strategy in rehabilitation application obsolete. Advancement in hydration at early age leads to formation of partially emptied capillary spaces contributing to self-desiccation, decrease of the relative humidity and increase of the capillary depression. Since water is under depression, the solid porous material is under compression forcing the material to shrink. From the aforementioned, it can be deduced that the autogenous shrinkage is a force driven phenomenon: a force is applied on the ageing viscoelastic porous skeleton and the apparent structural response of the bulk cementitious material is the autogenous shrinkage strain. Based on the aforementioned two levels of investigation were considered in this thesis: I. Material level: ageing viscoelastic porous skeleton of hydrating cementitious material II. Structural level: autogenous shrinkage development under the action of its driving forces The objective of this thesis was to study the development of the autogenous shrinkage and its relation with the development of microstructure and mechanical properties in SH-UHPFRC cured at moderate and low temperature conditions (1 to 20°C). Focus was put on: (1) kinetics and magnitude of hydration of silica fume and cement, (2) activation energy of the processes, (3) stiffness (E modulus and Poisson ratio) development, and (4) states of water and pore development. Finally a cross link analysis of information obtained from material and structural level was carried out to better highlight the mechanisms and driving forces of autogenous shrinkage. CM22-TKK, a SH-UHPFRC developed at MCS for rehabilitation applications, on the basis of CEMTECmultiscale® fibrous mixes, was used. Silica fume is one of the major constituents of CM22-TKK (26% by mass of cement). Extent o
Thomas Keller, Tara Habibi, Landolf-Giosef-Anastasios Rhode-Barbarigos