We propose a novel approach to evaluating the ionic Seebeck coefficient in electrolytes from relatively short equilibrium molecular dynamics simulations, based on the Green-Kubo theory of linear response and Bayesian regression analysis. By exploiting the ...
In various robotics applications, the selection of function approximation methods greatly influences the feasibility and computational efficiency of algorithms. Tensor Networks (TNs), also referred to as tensor decomposition techniques, present a versatile ...
This paper presents a comparison of machine learning (ML) methods used for three-dimensional localization of partial discharges (PD) in a power transformer tank. The study examines ML and deep learning (DL) methods, ranging from support vector machines (SV ...
The rise of robotic body augmentation brings forth new developments that will transform robotics, human-machine interaction, and wearable electronics. Extra robotic limbs, although building upon restorative technologies, bring their own set of challenges i ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...
Sample efficiency is a fundamental challenge in de novo molecular design. Ideally, molecular generative models should learn to satisfy a desired objective under minimal calls to oracles (computational property predictors). This problem becomes more apparen ...
Modern computing has enhanced our understanding of how social interactions shape collective behaviour in animal societies. Although analytical models dominate in studying collective behaviour, this study introduces a deep learning model to assess social in ...
Modular robotics link the reliability of a centralised system with the adaptivity of a decentralised system.
It is difficult for a robot with a fixed shape to be able to perform many different types of tasks.
As the task space grows, the number of functi ...
Humans use tools to complete impact-aware tasks, such as hammering a nail or playing tennis. The postures adopted to use these tools can significantly influence the performance of these tasks, where the force or velocity of the hand holding a tool plays a ...
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...