We study the problem of learning unknown parameters of stochastic dynamical models from data. Often, these models are high dimensional and contain several scales and complex structures. One is then interested in obtaining a reduced, coarse-grained descript ...
This thesis focuses on non-parametric covariance estimation for random surfaces, i.e.~functional data on a two-dimensional domain. Non-parametric covariance estimation lies at the heart of functional data analysis, and
considerations of statistical and com ...
Accurate spatiotemporal modeling of conditions leading to moderate and large wildfires provides better understanding of mechanisms driving fire-prone ecosystems and improves risk management. Here, we develop a joint model for the occurrence intensity and t ...
Poor decisions and selfish behaviors give rise to seemingly intractable global problems, such as the lack of transparency in democratic processes, the spread of conspiracy theories, and the rise in greenhouse gas emissions. However, people are more predict ...
We consider the problem of positive-semidefinite continuation: extending a partially specified covariance kernel from a subdomain Omega of a rectangular domain I x I to a covariance kernel on the entire domain I x I. For a broad class of domains Omega call ...
This paper introduces a new modeling and inference framework for multivariate and anisotropic point processes. Building on recent innovations in multivariate spatial statistics, we propose a new family of multivariate anisotropic random fields, and from th ...
How can we discern whether the covariance operator of a stochastic pro-cess is of reduced rank, and if so, what its precise rank is? And how can we do so at a given level of confidence? This question is central to a great deal of methods for functional dat ...
Aims. We investigate the contribution of shot-noise and sample variance to uncertainties in the cosmological parameter constraints inferred from cluster number counts, in the context of the Euclid survey. ...
We present a Bayesian inference for a three-dimensional hydrodynamic model of Lake Geneva with stochastic weather forcing and high-frequency observational datasets. This is achieved by coupling a Bayesian inference package, SPUX, with a hydrodynamics packa ...
Understanding the diffusion patterns of sequences of interdependent events is a central question for a variety of disciplines. Temporal point processes are a class of elegant and powerful models of such sequences; these processes have become popular across ...