Nuclear magnetic resonance (NMR) is a physical phenomenon that is widely used in the biomedical field due to its non-invasive and non-destructive properties, which make it an optimal tool for the in vivo investigation of living organs such as the brain. This thesis focused on the development of 1H magnetic resonance (MR) techniques at ultra-high magnetic field strength to improve the measurement and quantification of the 1H MR signal in the rodent brain, and to accurately assess the alterations of the metabolite and water concentrations in several cerebral metabolic disorders. In rodents, 1H MR spectroscopy (MRS) allows the assessment of the concentration of up to 20 metabolites that take part in many cerebral metabolic processes such as neurotransmission, cell energy metabolism, cell growth and osmosis. 1H MRS thus provides a unique tool to non-invasively investigate the cerebral metabolism in healthy and pathological conditions in vivo. However, it is essential for reliable quantification that systematic errors and overlap of the measured metabolite signals are minimized. To that aim, the impact of a potential additional short T2 relaxation time component, which might affect the glutamine quantification at long echo times, was assessed in this thesis. The J-difference editing technique MEGA-SPECIAL was optimized to obtain the unequivocal detection of the glutamine signal at moderate echo time. As a control, the glutamine concentration obtained with this method was then compared to short echo time 1H MR spectroscopy measurements. Since the two measurements of the glutamine concentration at short and moderate echo time did not result in significant differences, this study concluded that there is a low probability of an effect of a short T2 relaxation time component on the glutamine concentration measurement. Since a reliable quantification of 1H spectra partly relies on the accurate assessment of the overlapping macromolecule contribution to the metabolites, an optimized method for the post-processing of the measured macromolecule signal was developed to ensure an accurate assessment of its contribution. This method was applied to investigate potential regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account, as well as for the assessment of macromolecule alterations in a human-glioma mouse model. No regional macro- molecule variation was found to significantly affect the metabolite quantification in the healthy mouse brain, which supports the common use of a general macromolecule spec- trum for healthy rodent brain 1H spectra quantification. However, several alterations of the macromolecule spectrum, some of which were reported for the first time, were observed in glioma tissues, and their accurate assessment was shown to be necessary for reliable metabolite quantification. Localized 1H MR spectroscopy techniques that are designed to acquire the1H MR signal from a 3D volu
David Lyndon Emsley, Federico De Biasi, Máté Visegrádi, Michael Allan Hope