In this paper, we study the compressibility of random processes and fields, called generalized Levy processes, that are solutions of stochastic differential equations driven by d-dimensional periodic Levy white noises. Our results are based on the estimation of the Besov regularity of Levy white noises and generalized Levy processes. We show in particular that non-Gaussian generalized Levy processes are more compressible in a wavelet basis than the corresponding Gaussian processes, in the sense that their n-term approximation errors decay faster. We quantify this compressibility in terms of the Blumenthal-Getoor indices of the underlying Levy white noise.
Victor Panaretos, Yoav Zemel, Valentina Masarotto
Matthias Finger, Konstantin Androsov, Qian Wang, Jan Steggemann, Yiming Li, Anna Mascellani, Varun Sharma, Xin Chen, Rakesh Chawla, Matteo Galli
Victor Panaretos, Neda Mohammadi Jouzdani